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by Jerôme Baltzersen

August 3, 2010

Thesis adviser: Martin Jacobsen

Thesis for the Master degree in Mathematics.
Department of Mathematical Sciences, University of Copenhagen.
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1.3.2. Properties of the Itô integral . . . . . . . . . . . . . . . . . . 9

1.3.3. Analysis of one-dimensional homogeneous diffusions . . . . . 11

1.3.4. Diffusion examples . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4.1. Brownian motion . . . . . . . . . . . . . . . . . . . 14

1.3.4.2. Geometric Brownian motion . . . . . . . . . . . . . 15

1.3.4.3. Ornstein-Uhlenbeck process . . . . . . . . . . . . . . 16

1.3.4.4. Cox-Ingersoll-Ross process . . . . . . . . . . . . . . 17

1.4. Markov processes; stationarity and the infinitesimal generator . . . . 18

1.5. Piecewise deterministic Markov processes . . . . . . . . . . . . . . . 19

1.6. Renewal theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1. Renewal equations and the elementary renewal theorem . . . 23

1.6.2. Key renewal theorem . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.3. Stationary renewal processes . . . . . . . . . . . . . . . . . . 29

1.6.4. Regenerative processes . . . . . . . . . . . . . . . . . . . . . . 30

2. Jump-diffusion models using jump targets 31
2.1. The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. Stationary distributions . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3. Description of stationary density via renewal theory . . . . . . . . . 35

2.4. Brownian motion returning to 0 . . . . . . . . . . . . . . . . . . . . . 36

2.4.1. Standard Brownian motion . . . . . . . . . . . . . . . . . . . 36

2.4.2. General Brownian motion . . . . . . . . . . . . . . . . . . . . 39

ii



Contents

2.5. Brownian motion with arbitrary jump distribution . . . . . . . . . . 40
2.5.1. Standard Brownian motion . . . . . . . . . . . . . . . . . . . 40
2.5.2. General Brownian motion . . . . . . . . . . . . . . . . . . . . 42

2.6. Stationarity for general diffusion pieces and non-constant jump intensity 42
2.7. Stationary diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3. Jump-diffusion models using jump sizes 46
3.1. The model and stationary distributions . . . . . . . . . . . . . . . . 46
3.2. Deterministic pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1. Special case with degenerate jumps . . . . . . . . . . . . . . . 49
3.2.2. General jump size distribution . . . . . . . . . . . . . . . . . 50
3.2.3. Other deterministic pieces . . . . . . . . . . . . . . . . . . . . 50

3.3. Diffusion pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4. Negative jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5. Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. Applications 57
4.1. Models using jump targets . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2. Models using jump sizes . . . . . . . . . . . . . . . . . . . . . . . . . 60

A. Distribution theory, convolutions and integral transformations 61
A.1. Distribution theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2. Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3. Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



Abstract

Many phenomena exhibit a piecewise continuous non-deterministic behavior. Jump-
diffusions with jumps from a renewal process are an obvious choice for modeling such
behavior. The key question treated in this thesis is to investigate when a stationary
distribution exists and, if possible, to find it.

Two different models are considered. The first specifies the target just after each
jump, while the second specifies the change relative to the position of the process
just before the jump. Applications of both models are briefly touched upon.

The existence and uniqueness of a stationary distribution is shown using the
key renewal theorem for a very broad class of models. In case of the jump target
model, renewal theory offers a way to find the stationary distribution while a integro-
differential equation, sometimes solvable, for the density is also presented.

The jump size model is harder to deal with. In certain cases it is possible
to reduce the analysis to a jump target model. Nevertheless, explicitness is much
harder to attain.

For both models, results are more tangible when the jumps stem from a Poisson
process. For such models, in the jump target case we are able to find the stationary
density for many popular diffusion choices.
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Resume

Mange fænomener udviser en stykkevis ikke-deterministisk kontinuert opførsel. Et
oplagt valg til at modellere disse er spring-diffusioner med spring fra en underliggende
fornyelsesproces. Det centrale tema i specialet er at undersøge, hvorn̊ar en stationær
fordeling eksisterer, og hvis muligt at finde den.

To forskellige modeller betragtes. Den første angiver den position, der springes
til, mens den anden angiver springstørrelsen relativt til processens position umid-
delbart inden springet. Anvendelser af begge modeller berøres kort.

Eksistensen of entydigheden af en stationær fordeling vises for en bred klasse
af modeller via fornyelsessætningen. I modellen der angiver springpositionen giver
fornyelses teori mulighed for at finde den stationære fordeling. Derudover præsen-
teres en integro-differentialligning for tætheden, der i specialtilfælde kan løses.

Modellen, der angiver springstørrelse, er vanskeligere at arbejde med. I en række
tilfælde kan analysen reduceres til en springpositionsmodel. Ikke desto mindre er
det langt sværere at opn̊aeksplicitte resultater.

For begge modeller bliver resultaterne mere h̊andgribelige, n̊ar springene stam-
mer fra en Poisson-proces. I s̊adanne modeller kan den stationære fordeling findes
for en række populære diffusioner i springpositionstilfældet.
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Preface

‘Well!’ thought Alice to herself, ‘after such a fall as this, I shall think
nothing of tumbling down stairs!’
Lewis Carroll, “Alice’s Adventures in Wonderland,” 1865.

This is a bittersweet feeling. Writing this preface represents the conclusion of
two things: i) the thesis itself and ii) my time as a student. Both have with their lows
and highs been dear projects into which I have poured much energy and passion.

The sweetness: No undertaking can be truly evaluated while in the midst of it;
how could you know if it’s up for a happy ending? Wrapping something up means
completing what one set out to do.

The bitterness: When having enjoyed the daily labor throughout, when realizing
that the process too, not only the result, matters; when having met great people;
when having seen beauty at a different scale; why would it have to stop?

Ahead lies uncertainty; opportunity!

Jerôme Baltzersen
Copenhagen, August 2010
mail@baltzersen.info
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Introduction

I have been very fortunate to be exposed to a vast amount of different mathematics,
abstract as well as applied; technical as well as hands on. Most mathematicians
know the feeling of immense beauty when an argument is of such clarity one could
mistake it for being divine.2 On the other hand building a mathematical model
can be very intriguing solving a real problem and adding to our understanding of
the world surrounding us. Describing a phenomenon mathematically such that its
most outspoken characteristics are fulfilled allows for the powerful framework of
mathematical analysis to investigate implications beyond the initial comprehension.

When passionate about both, how does one combine them? I think rigorous
probabilistic modeling qualifies. The tools needed are sufficiently complex for a deep
mathematical understanding of underlying concepts while at the same time, the very
origin of probability theory dictates a high involvement with reality.

Therefore, in short, this thesis links my two main interests, while at the same
time expanding my horizon of a mathematical understanding of the world.

How to read this thesis

This thesis contains three parts:

• discussion of preliminary theory,

• building and analysis of models, and

• applications of the models.

The vast majority of the theory needed for building the models was new to the
author prior beginning the work on the thesis. Some of it is therefore developed,
while some is quoted simply in order to get the notation and formulation of the
results in a manner useful in this thesis.

The preliminary theory naturally splits into three sections: marked point pro-
cesses, stochastic calculus, and renewal theory. The first topic was known to the
author beforehand and presented briefly. In contrast, stochastic calculus as well as
renewal theory were topics completely new to the author. Here the theory is devel-
oped, motivated, and exemplified to the extent allowed in the setting of a thesis.

The reader well-acquainted with all three parts may want simply to skim the
introductory chapter to get a feel for the notation. The reader unfamiliar with
marked point processes is most likely better off beginning with, or at least in parallel,
reading a textbook such as [Ja06]. The chapters on stochastic calculus and renewal

2“You don’t have to believe in God, but you should believe in The Book.”, Paul Erdös
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theory are, albeit superficial compared to a standard textbook treatment, more self-
contained and should have somewhat of an isolated value.

We then proceed to build the actual models. Two similar models only differing
in what happens at jump times are described. The jump target model, Chapter 2,
specifies where the next process begins. The jump size model, Chapter 3, specifies
what increment should be added to the pre-jump position of the process.

The reader is strongly encouraged to begin with the jump target model. Not
only can more explicitness be obtained in this model, but it also serves as the
foundation for the jump size model. That is, many of the results in the jump size
model are derived by realizing that certain cases can be reduced to a jump target
setting, which opens up for results already established.

In the jump target model quite a few nice results are established and the reader
will find explicit examples of stationary densities and functional equations describing
such. The jump target model is mature enough to be applied even though there are
plenty of outstanding questions. Unfortunately this is nowhere near the case for
the jump size model. It turns out to be dreadfully difficult to even establish the
existence of the stationary distribution and in fact the author was not able to find
a single case where this could be proved.

To ignite the creativity of the reader wishing to apply the models (probably
primarily the jump target model) two such are presented in Chapter 4. The jump
target model is applied to the potential of a neuron with some success and a strong
indication of perspectives. A model of beta cells producing insulin are built using
the jump size model, but with the model being so intrinsically inaccessible little
ground is gained.
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CHAPTER 1

Point processes, stochastic calculus, and renewal theory

The title reveals that this chapter contains the treatment of three theories each ex-
tensively covered by textbooks. It is a lot of ground to cover. However, knowing
what the applications are in later chapters we may offer a concise picture of the in-
volved theory often using a notation that highlights the important parts. Naturally,
some generality is lost hereby for which the interested reader is encouraged to pick
up the references.

While many books have served as inspiration some have been indispensable and
reoccurring in the process of understanding the theory. The point process theory
is based entirely on [Ja06]. The stochastic calculus needed in this thesis only uses
the Brownian motion as integrators and as such [Ok00] is a fitting choice, while
for a more detailed treatment of diffusions [Ja08], in particular chapters 9 and 11,
is recommended. Renewal theory has many excellent expositions, but [KT75] has
been the authors main source of inspiration. Some notation and results are found
in Appendix A.

Classics such as [Fe66] and [KT75] are lucid standard references for probability
theory and stochastic processes with good reason, while the author is trained using
[Ha09] and [Ja03] providing a home court advantage.

The highlights of this chapter is the construction of piecewise deterministic
Markov processes using marked point processes and the analysis of one-dimensional
diffusions, particularly stationarity. Finally, the key renewal theorem and regener-
ative processes discussed are both essential for proving the existence of stationary
distributions in the models later on.

The notation used throughout is rather standard and the well-acquainted reader
should be able to go directly to the models of Chapters 2 and 3 using this chapter
more as a reference.

1.1. General notation

By “:=” we mean “is defined to be equal to,” x ∧ y := min{x, y}, and f(t) ∼ g(t)
is equivalent to limt→∞ f(t)/g(t) = 1. Certain function spaces are encountered
throughout the thesis as well. Cn(]a, b[) are the n times differentiable functions
on the interval ]a, b[, while Cn0 (]a, b[) and Cnb (]a, b[) in addition requires compact

1



1. Point processes, stochastic calculus, and renewal theory

support and boundedness, respectively. Here ]a, b[ can be substituted with any open
subset of R. Integration of f with respect to t is denoted

∫
f dt or

∫
dtf depending

on what notation is more convenient in the given context.
Denote the abstract background space by (Ω,F ,P) with P the probability mea-

sure. We are interested in real-valued stochastic variables mapping into (R,B),
where B is the Borel-algebra on R. We further write R0 = [0,∞[ and R+ =]0,∞]
with corresponding σ-algebras B0 and B+. The degenerate measure at {x} is denoted
by εx.

Let X be a real-valued random variable on (Ω,F ,P). The transformed proba-
bility measure then becomes X(P) and if X is P-integrable

E[X] :=

∫
XdP.

If X is strictly positive with distribution F it holds that

E[X] =

∫ ∞
0

∫ x

0
dt dF (x) =

∫ ∞
0

∫ ∞
t

dF (x) dt =

∫ ∞
0

1− F (x) dx, (1.1)

where the survivor function P(x) := 1−F (x) is often used. In the discrete case this
becomes

E[X] =
∞∑
k=0

P(X ≥ k). (1.2)

A stochastic process is a family of stochastic variables denoted by X = (Xt)t∈I ,
usually thinking of t belonging to the half line I = [0,∞[, where each Xt maps into
some general state space denoted by (G,G). Often a probability field is equipped
with an increasing sequence of sub-σ-algebras, that is Fs ⊂ Ft whenever s ≤ t,
called a filtration and (Ω,F ,Ft,P) is called a filtered probability space. A stochastic
process Xt on (Ω,F ,Ft,P) is said to be Ft-adapted—or simply (Xt,Ft) is adapted—
if Xt is Ft measurable for all t ≥ 0. The mapping from (R0×Ω,B0⊗F) into (G,G)
given by

(t, ω) 7→ Xt(ω) (1.3)

is considered. X is said to be measurable if this map is measurable in both coor-
dinates. A stochastic process is predictable (or previsible) if, intuitively, its values
are known just ahead of time. Formally, it is required that the map from (1.3) is
measurable with respect to the sub-σ-algebra generated by

]s,∞[×F s ∈ R0, F ∈ Fs.

The Brownian motion is denoted by B = (Bt)t≥0 and used throughout. It is defined
in [Ja03] p. 132 and all of p. 131-158 is assumed well-known to the reader. A
standard Brownian motion has drift 0, variance 1, and begins at 0.

Note, that ∂n denotes derivatives in distributional sense (see Section A.1), while
dn

dxn is used for regular differentiation.
We also need a notion of convergence of a sequence of probability measures

(νn)∞1 . We write νn
w−→ ν0 and say that νn converges to ν∞ if

lim
n→∞

∫
f(y) dνn(y) =

∫
f(y) dν∞

for all f ∈ Cb(G). Continuity is only well-defined if G is equipped with a topology,
which is always the case in this thesis as we restrict attention to the case G = R.

2



1.2. Marked point processes

1.2. Marked point processes

Intuitively, a marked point process (MPP) is a stochastic process jumping between
a certain set of marks/labels called the mark space at discrete stochastic times.
Albeit being simply to grasp, draw, and explain intuitively, the mathematical rigor
required is rather extensive. A major part of this thesis is concerned with the
connection between MPPs and piecewise deterministic Markov processes (PDMP),
see Section 1.5.

Let T1, . . . denote the stochastic jump times and let (E, E) be the mark space
with the corresponding σ-algebra. Adjoin the irrelevant mark, ∇, used for an event
never occurring, that is if Tn = ∞ for some n. Although this event never occurs it
formally still needs a mark associated. Define (E, E) = (E ∪ {∇}, σ(E , {∇})).

Definition 1.1 (Marked point process). A marked point process is the pair given
by

((T ,Y) = ((Tn)n≥1, (Yn)n≥1)

with Tn ∈ R+ and Yn ∈ E both random variables defined on (Ω,F ,P). It must
satisfy

P(0 < T1 ≤ T2 ≤ . . .) = 1, (1.4)

P(Tn < Tn+1, Tn <∞) = P(Tn <∞), (1.5)

P( lim
n→∞

Tn =∞) = 1, (1.6)

P(Yn ∈ E, Tn <∞) = P(Tn <∞) for n ≥ 1, and (1.7)

P(Yn ∈ {∇}, Tn =∞) = P(Tn =∞) for n ≥ 1. (1.8)

Condition (1.4) through (1.6) only involves the jump times. When disregarding
the marks a process satisfying these is called a Simple Point Process (SPP) and
results concerning MPPs can be translated into results about SPPs. Condition (1.4)
together with (1.5) ensures that as long as a jump occurs in finite time the jump
times are strictly increasing with probability 1.

Condition (1.6) is of particular interest. It rules out so-called explosions, that
is infinitely many jumps in finite time. The theory excluding explosions suffices for
our applications albeit some results need the notion of MPPs with explosion; a class
referred to by MPPex and used in Theorem 1.1.

The marks could be virtually anything: A real number, a tuple of parameters
describing a function or even functions as long as the mark space is measurable.
Nevertheless, this thesis restricts the mark spaces to Borel-spaces in order to assure
that transition probabilities exist. Condition (1.8) formalizes the use of the irrelevant
mark for the event never occurring. Note that the definition does not guarantee
genuine jumps as it might be that yn = yn+1 for some n the only restriction being
that both yn, yn+1 ∈ E.

Rather than viewing, as Definition 1.1 suggests, an MPP as a tuple of R+-
and E-valued random variable, it can be fruitful to impose additional structure. An
MPP (T ,Y) can be viewed as a random variable mapping into (KE ,KE) where

KE =
{

((tn), (yn)) ∈ RN+ × E
N

:

0 < t1 ≤ . . . ≤ tn ≤ ∞, tk < tk+1 if tk <∞;

yn ∈ E if and only if tn <∞
}

3



1. Point processes, stochastic calculus, and renewal theory

equipped with the σ-algebra KE generated by the coordinate projections

T ◦n((tk), (yk)) = tn and Y ◦n ((tk), (yk)) = yn.

The distribution of (T ,Y) on (KE ,KE) is well-defined and given by R = (T ,Y)(P).
Consider for a brief moment a SPP; a point process where we only keep track

of times. Sometimes it is more convenient to describe the SPP as a counting process
Nt yielding the number of jumps before time t. This is a of course again a stochastic
variable and it is not hard to imagine that using Tn = inf{t ≥ 0 : Nt = n} the jump
times can be recovered showing the description is bijective.

Analogously, it is sometimes advantageous to deal with an MPP on a similar
space rather than (KE ,KE). Adding the marks gives another dimension and there-
fore the appropriate question to pose is how many jumps occurred into a subset A
of the marks. This is denoted by Nt(A) and defined as

Nt(A) :=
∞∑
n=1

1(Tn≤t,Yn∈A)

with the auxiliary notation for all jumps during ]0, t]

N t(A) = Nt(E).

The jump times are still easily recovered using

Tn = inf{t ≥ 0 : N t = n},

whereas it is less obvious how to, in a measurable fashion, recover the Yn’s. However,
it holds for any A ∈ E that P-a.s.

(Yn ∈ A) =
∞⋃

K′=1

∞⋂
K=K′

∞⋃
k=1

(
N (k−1)/2K = n− 1, Nk/2K (A)−N(k−1)/2K (A) = 1

)
as argued in [Ja06] p. 14-15. This is adequate for our needs, but it should be noted
that a random counting measure % is cleverly introduced such that %(]0, t] × A) =
Nt(A) easing matters when (E, E) is uncountable.

Theorem 1.1 below gives a precise characterization of the construction of MPPs,
but before explaining the intuition behind the construction and stating the theo-
rem formally some notation is developed. Let Zn = (T1, . . . , Tn, Y1, . . . , Yn), zn =

(t1, . . . , tn, y1, . . . , yn) and (zn, t) = (t1, . . . , tn, t, y1, . . . , yn). Further, define K
(n)
E to

be the set of valid sequences of length n, that is

K
(n)
E =

{
zn ∈ R

n
+ × E

n
: 0 < t1 ≤ . . . ≤ tn ≤ ∞, tk < tk+1 if tk <∞

and yk 6= ∇ if and only if tk <∞
}

and
J

(n)
E =

{
(zn, t) : zn ∈ K(n)

E and tn ≤ t with tn < t if tn <∞
}
.

In order to be able to discuss transition probabilities the obvious σ-algebras given by

their respective coordinate projections, K(n)
E and J (n)

E , are defined. The transition
probabilities for the time points are denoted by P (n) for n ∈ N, while the marks’
transition probabilities are denoted by π(n) for n ∈ N0.

Having the formal setup in place allows us to discuss the construction of MPPs.
The key ingredient is to begin with a marginal distribution P (0) of the first jump
time, T1, and then use transition probabilities to specify Tn+1 given Zn and Yn+1

given (Zn, Tn+1). Note, that the distribution of the n+ 1th mark is conditioned on

at what time the jump takes place Tn+1 in accordance with the definition of J
(n)
E .

4



1.3. Continuous stochastic calculus

Theorem 1.1 (MPP Construction). Given a probability P (0) and a set of transition
probabilities P (n), n ≥ 0, and π(n), n ≥ 1 satisfying

P (n)
zn (]tn,∞]) = 1 if tn <∞
P (n)
zn ({∞}) = 1 if tn =∞
π(n)
zn (E) = 1 if t <∞

π(n)
zn ({∇}) = 1 if t =∞

(1.9)

there exists a unique probability R on (KE ,KE) (potentially with explosions) such

that T ◦1 (R) = P (0). Further, for zn ∈ K(n)
E with n ≥ 1, P

(n)
zn is a regular conditional

distribution of T ◦n+1 given Z◦n = zn and, similarly, for (zn, t) ∈ J (n)
E with n ≥ 0, π

(n)
zn,t

is a regular conditional distribution of Y ◦n+1 given (Z◦n, T
◦
n+1) = (zn, t).

Finally, R defines a MPP without explosion if and only if

R
(

lim
n→∞

T ◦n =∞
)

= 0.

Proof. See [Ja06] Theorem 3.2.1 p. 22-23 for a discussion.

Thus far, we have not spend a great deal of effort describing MPPs with explo-
sion, but nevertheless Theorem 1.1 constructs an MPP that potentially has explo-
sions. While a priori it is not clear at all whether the construction provided by the
theorem actually exhaust all possible MPPs it is, unfortunately, not even possible to
give a simple characterization of choices of P (n), n ≥ 0, and π(n), n ≥ 1, such that
the resulting MPP is a genuine MPP without explosion. This is often referred to as
the stability problem and an MPP (or RCM for that matter) without explosions is
said to be stable.

It should also be noted that it is very deliberate that the theorem states “a”
rather than“the” regular conditional distribution. Several choices of transition prob-
abilities may result in the same R or R, respectively, if the differences are limited to
a R or R null-set. Further, as (1.9) dictates the behavior of the transition probabil-
ities when either tn =∞ or t =∞, it suffices to describe the transition probabilities
for tn, t <∞.

1.3. Continuous stochastic calculus

Our goal is to analyze jump-diffusions and while the above offers one possible de-
scription of jumps this sections deals with the diffusion parts needed. We first offer
a basic understanding of the concepts needed for doing stochastic calculus inspired
by [Ok00], while the more in-depth analysis of homogeneous one-dimensional diffu-
sions and in particular the stationarity results are based on [Ja08]. Examples are
condensed at the end in Section 1.3.4 where diffusions used later on are described.

As a motivating example, we begin by studying the solutions to the stochastic
differential equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = U, (1.10)

where U is a random variable representing the boundary condition of the SDE
and B = (Bt)t≥0 denotes the Brownian motion. The functions b : R → R and
σ : R→]0,∞[ are called the drift and variance coefficient; in order to ensure existence

5



1. Point processes, stochastic calculus, and renewal theory

and uniqueness they are subject to restrictions (see Theorem 1.5). It is the properties
of X = (Xt)t≥0 we shall study.

When the stochastic process described by (1.10) has well-defined expectation,
we denote it by EU [Xt]. That is, the expectation of the stochastic variable Xt where

X0
D
= U as the expectation obviously depends on the boundary condition. If U ≡ εx

is degenerate we simple write Ex rather than Eεx .
It is easily motivated why stochastic behavior should be introduced. Firstly,

the phenomenon we wish to model may itself be subject to randomness. For exam-
ple, when modeling the size of a large population there surely are some reasonable
assumptions to be made about the growth of the population, but even for a large
population some macro factors occurring at random such as natural disasters or
lethal viral infections could influence the growth in the model.

In physics, it might be argued, phenomena exist that are very close to deter-
ministic, but even a model of such could use the stochastic nature of the differential
equation to model measurement uncertainties.

Yet another way to justify the introduction of a non-deterministic quantity in a
model is by focusing on the major factors of interest considering the less significant
ones in a compound variable of stochastic behavior. Take for instance the insulin
producing beta cells in the pancreas. Certainly it seems reasonable to let the rate
of insulin production depend on the glucose level of the blood while the sum of the
myriad of other internal and external factors are treated stochastically.

In analogy to classical calculus, integration is imperative in attacking SDEs
and our first task is therefore to give meaning to stochastic integrals. Imagine for a
moment that (1.10) is an ODE. We would integrate on both sides and obtain

Xt =

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs,

where the entity
∫ t

0 σ(s,Xs)dBs is a stochastic integral. Both the integrand as well
as the measure/increment function, integrator, depend on ω and as such the integral
itself is a stochastic variable depending on t. Hence integrating one stochastic process
(Xt)t≥0 with respect to another stochastic process (Bt)t≥0 returns a new stochastic
process. It is the resulting stochastic process that, when well-defined, we wish to
investigate.

Already at this point a potential problem lurks beneath the surface. If F
is any non-decreasing non-negative function we know how to interpret

∫
dF (x) as

limit of a sum. Due to the assumptions on F we can choose any point in the interval
considered as part of the limit and still end up with the same result. Any continuous
function of finite variation can be written as a difference between two non-decreasing
non-negative functions. The Brownian motion, however, has infinite variation and is
nowhere monotone on any interval. Thus we might (and indeed will!) face a problem
when deciding what point of an interval to use for our limit.

The different ways to define the stochastic integral turn out not to be equivalent
and this thesis uses the Itô integral exclusively. Other prominent choices such as the
Stratonovich integral exists for which the reader is referred to [Ok00].

1.3.1. Construction of the Itô integral

This section constructs the Itô integral with respect to a standard Brownian motion
B in a rigorous manner. This suffices for the work presented in this thesis however,
more general processes can be used as integrators treated in [Ja08] and [RW00].

6



1.3. Continuous stochastic calculus

We have already hinted that a nave approach imitating the construction of
a standard integral could fail. Nevertheless, similarities are found. Specifically, a
three-step construction is used where the first task is to replace the simple functions
from Lebesgue integration with a different class of functions up to the task. These
are called elementary functions. This is hardly surprising, but a crucial difference
in the construction lies in the Itô isometry. It allows us to identify processes with
finite quadratic variation with functions in L2(P), a space much more familiar to us.

Before proceeding with the isometry and the actual steps, we define the class
of functions needed to build the Itô integral .

Definition 1.2. Define V(S, T ) as the class of functions f :]0,∞[×Ω→ R fulfilling:

• f(t, ω) is measurable for any t ≥ 0 and ω ∈ Ω,

• f(t, ω) is Ft-adapted, and

• E[
∫ T
S f(t, ω)2dt] <∞.

Note that the elements of V are random variables. By

Πn = {t0 = S; t1, . . . , tn = T}, ti < ti + 1,

we define a partition of [S, T ] with mesh going to zero as n goes to infinity.

Definition 1.3. Let Πn(S, T ) be a partition and Zj a sequence of Ftj -adapted
random variables. A function ϕ ∈ V(S, T ) is called elementary if it can be written
as

ϕ(t, ω) =
∑

j:tj∈Πn(S,T )

Zj(ω)1[tj ,tj+1[(t).

Note that, if Zj were not Ftj -adapted for all j, ϕ would not lie in V. Recklessly,
we define ∫ T

S
ϕ(t, ω) dBt =

∑
j:tj∈Πn(S,T )

Zj(ω)(Btj+1 −Btj )(ω) (1.11)

where it should be noted that the integrand is evaluated at the left endpoint. We
need a special case of the Itô isometry for ϕ elementary and bounded, while a more
general version is presented in Theorem 1.3.

Lemma 1.2 (Itô isometry, simple). Let ϕ be an elementary and bounded function
in V(S, T ). Then

E

[(∫ T

S
ϕ(t, ω) dBt

)2
]

= E

[∫ T

S
ϕ2(t, ω) dt

]
. (1.12)

Proof. Straight-forward calculations yield

E

[(∫ T

S
ϕ(t, ω) dBt

)2
]

= E

∑
i,j

ZiZj(Bti+1 −Bti)(Btj+1 −Btj )


=
∑
j

E[Z2
i ](tj+1 − tj) = E

[∫ T

S
ϕ2(t, ω) dt

]
,

where we have used that the standard Brownian motion has independent increments
with mean 0.
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1. Point processes, stochastic calculus, and renewal theory

Note how the isometry takes us from unfamiliar domain—integration with re-
spect to a stochastic process—to the well-acquainted space of L2(P). We now intro-
duce the three-step process to approximate any function f ∈ V(S, T ) by a sequence
of bounded elementary functions. This work lays the basis for a rigorous definition
of the Itô integral with respect to a Brownian motion.

Step 1 First, we wish to approximate g ∈ V(S, T ) bounded and t-continuous by a
sequence of elementary functions ϕn such that

E

[∫ T

S
(g − ϕn)2 dt

]
→ 0 for n→∞

already from the beginning exploiting the convenience of operating on the familiar
L2(P)-space. Put ϕn(t, ω) =

∑
j g(tj , ω)1[tj ,tj+1[(t) with tj = tnj ∈ Πn. From con-

tinuity of g it follows that
∫ T
S (g − ϕn)2 dt → 0 for n → ∞ for all ω by dominated

convergence.

Step 2 Let h ∈ V(S, T ) be bounded. Then there exists a sequence of gn bounded
and t-continuous from Step 1 such that

E

[∫ T

S
(h− gn)2 dt

]
→ 0 for n→∞.

Begin by defining the auxiliary functions ψn(t) continuous with support on (−1/n, 0)
and integrating to 1. Let

gn(t, ω) =

∫ t

0
ψn(s− t)h(s, ω) ds.

It is immediate that if |h| ≤M then |gn| ≤M , too. Realizing that gn is t-continuous
is simple. For tk → t we find that 10,tk(s)h(s) → 10,t(s)h(s). The latter serving as
an integrable upper bound, dominated convergence implies that gn(tk, ω)→ gn(t, ω)
for each ω. It is also needed that gt is Ft-adapted in order for gt to be in V(S, T ).
This follows from h ∈ V(S, T ), is a bit technical, and omitted here. Using dominated

convergence once more it is seen that
∫ T
S (h− gn)2 dt→ 0 for n→∞ for each ω.

Step 3 Finally, let f ∈ V(S, T ) with no further restriction. It is then a simple
matter to construct a sequence hn each in V(S, T ) and bounded such that

E

[∫ T

S
(f − hn)2 dt

]
→ 0 for n→∞.

Define hn as follows and apply dominated convergence

hn(t, ω) =


−n f(t, ω) < −n,
f(t, ω) otherwise,

n f(t, ω) > n.

This concludes the steps needed to construct the Itô integral. Using Step 1 to
3, we know there exists a sequence of elementary functions ϕn such that

∫ T
S (f −

ϕn)2 dt→ 0.
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1.3. Continuous stochastic calculus

Definition 1.4 (Itô integral). Let f ∈ V(0, t) and B be a Brownian motion. The
Itô integral of f with respect to B is defined as

(f ·B)t =

∫ t

0
f(s, ω) dBs = lim

n→∞

∫ t

0
ϕn(s, ω) dBs (1.13)

We know how to interpret the right-hand side of (1.13) and that it can be
identified with an element of L2(P ) using (1.12). Specifically, it is a Cauchy sequence
in L2(P ) from which it follows that the limit exists and is well-defined, that is
independent of the choice of ϕn’s. From the isometry for elementary functions
(1.12), it follows immediately that

Theorem 1.3 (Itô isometry). For any f ∈ V(S, T ) it holds that

E

[(∫ T

S
f(t, ω) dBt

)2
]

= E

[∫ T

S
f2(t, ω)dt

]
. (1.14)

Note, that unlike in classical calculus it matters greatly at what time point we
choose to evaluate the integrand. The Itô integral given in (1.11) uses the left-most
point of an interval [ti, ti+1][ that is ti, whereas the Stratonovich integral uses the
midpoint (ti + ti+1)/2. When discussing existence of a (stochastic) integral there
are two parts to be considered: The integrand and the integration measure/process.
As mentioned, it is possible to integrate with respect to other processes than the
Brownian motion. The study of when (1.13) converges is not trivial at all and
omitted.

1.3.2. Properties of the Itô integral

Unsurprisingly, from the definition of elementary stochastic integrals (1.11), we ob-
serve that they are linear and that additivity of integrals holds. Perhaps more in-
terestingly, it is seen that the integral is FT -measurable and a back-of-the-envelope
calculation shows that for elementary functions

E

[∫ T

S
ϕ(t, ω) dBt

]
=
∑
j

E[Zj ] E[Btj+1 −Btj ] = 0

as Z ⊥ B. By taking limits these properties carries over to the Itô integral for all
functions in V(S, T ).

Before discussing stochastic integration in details, we need another definition.
In real analysis integrating a polynomial again returns a polynomial, that is, the
Riemann-Stieltjes integral operator maps from the class of polynomials into itself.
In the same way, it is convenient to describe a class of processes, which are mapped
into itself using the Itô integral operator.

Definition 1.5 (Itô Process, 1 dimensional). A stochastic process X is called an
Itô process if it, in differential form, can be written as

dXt = f(t, ω)dt+ g(t, ω)dBt, (1.15)

where Bt is a 1-dimensional Brownian motion and f and g are Ft-adapted. Equiva-
lently, in integral form

Xt = X0 +

∫ t

0
f(s, ω)ds+

∫ t

0
g(s, ω)dBs.

9



1. Point processes, stochastic calculus, and renewal theory

Before stating the infamous Itô’s formula we need to recall yet another defini-
tion.

Definition 1.6 (Quadratic (co)variation). Suppose X and Y are real-valued stochas-
tic processes then the quadratic covariation on the interval [s, t] is defined as, when
the limit exists,

[X,Y][s,t] := lim
|Π|→0

∑
ti,ti+1∈Π

(Xti+1 −Xti)(Yti+1 − Yti), (1.16)

where Π is a partition of [s, t], |Π| denotes the mesh length, and convergence is in
probability. Define further the quadratic variation as

[X][s,t] := [X,X][s,t]. (1.17)

Note that the quadratic (co)variation is a stochastic variable.
The limit always exists for Itô processes and with Xt given by (1.15) one can

show that
d[X]t = g2dt and in particular d[B]t = dt. (1.18)

While Definition 1.4 is rarely used for direct computations of integrals, Itô
formula below is. It also shows that Itô process are stable under transformation by
(sufficiently smooth) functions described in the following theorem:

Theorem 1.4 (Itô’s formula, 1 dimensional). Let X be an Itô process and h(t, x)
be once differentiable in t and twice in x. With Yt = h(t,Xt), Y is again an Itô
process given in differential form by

dYt =
dh

dt
(t,Xt)dt+

dh

dx
(t,Xt)dXt +

1

2

d2h

d2x
(t,Xt)d[X]t, (1.19)

where [X]t denotes the quadratic variation found in (1.18).

Proof. [Ok00] p. 44-48 offers a proof sketch for the simplified setting considered
here. For a rigorous proof see [RW00] p. 60-62 treating a more general case.

When first having defined the Riemann-integral, the urge to calculate
∫ t

0 x dx is

overwhelming. In analogy, we wish to calculate
∫ t

0 Bs dBs. Inspired by the classical
situation, we apply Itô’s formula to g(t, x) = 1

2x
2 such that Yt = 1

2B
2
t . Plugging into

(1.19), we obtain

d
1

2
B2
t = 0 +BtdBt +

1

2
d[B]t = BtdBt +

1

2
dt,

which is equivalent to∫ t

0
BsdBs =

1

2
B2
t −

1

2

∫ t

0
dx =

1

2
B2
t −

1

2
t. (1.20)

The latter term shows that the Itô integral behaves differently from the ordinary
Riemann-Stieltjes integral. It is also an example of a process of the form dXt = gdBt
where the integrated process cannot be written on the same form.

Finally, note that not all computations—albeit choosing g cleverly—leads to
expressions as simple as (1.20). For example with g(t, x) = x3/3, Itô formula yields∫ t

0
B2
sdBs =

1

3
B3
t −

∫ t

0
Bsds.
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1.3. Continuous stochastic calculus

Nevertheless, it often pays to choose g along the lines of the corresponding anti-
derivative from classical calculus.

To conclude the section an existence and uniqueness theorem is offered.

Theorem 1.5. Let b(t, x) and σ(t, x) both be Lipschitz continuous, that is

|b(t, x)− b(t, y)| ≤ Kb|x− y|,
|σ(t, x)− σ(t, y)| ≤ Kσ|x− y|

for t ≥ 0 and x, y ∈ R with Kb and Kσ constants. Then (1.10)

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = U

has a unique solution for each boundary condition given by a F0-measurable random
variable U .

Proof. See [Ja08] p. 75-81.

The proof is lengthy and the requirements for b and σ are also stronger than
needed; [Ja08] p. 81-82 discusses details.

1.3.3. Analysis of one-dimensional homogeneous diffusions

This section in brevity establishes properties of diffusion processes and is based on
Chapter 11 of [Ja08] where the reader may find most proofs and further details. A
diffusion is a process solving a particular kind of SDE of the form

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0 (1.21)

with B a standard Brownian motion. Note that b and σ are no longer allowed
to depend on t, but solely Xt. We do not assume b and σ to be Lipschitz and
for instance the Cox-Ingersoll-Ross process (see Section 1.3.4.4) fails to meet this
criterion. It is assumed that the diffusion lives on an interval ]l, r[.

Before proceeding, we define the differential operator A for f ∈ C2(R)

Af(x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x). (1.22)

Note that, when h(t, x) = h(x) ∈ C2(R) does not depend on t, Itô’s formula to gives

dh(Xt) = Ah(Xt)dt+ h′(Xt)σ(Xt)dBt, (1.23)

as the dh/dt-term is zero.
The process X being the one of interest, it turns out that considering the

transformed process S(X) for certain S yields results about X itself via Itô’s formula.
Let therefore S ∈ C2(]l, r[) where we assume that Xt ∈]l, r[ for all t. (1.23) becomes

dS(Xt) = AS(Xt)dt+ S′(Xt)σ(Xt)dBt.

A sufficient condition for S(X) to be a continuous local martingale is that AS ≡ 0,
equivalent to a simple first-order homogeneous ordinary differential equation in S′

with solution

S′(x) = c exp

(
−
∫ x

x0

2b(y)

σ2(y)
dy

)
(1.24)

11



1. Point processes, stochastic calculus, and renewal theory

for some c and unique up to an affine transformation. A function S fulfilling (1.24)
is called a scale function. Usually c > 0 is chosen such that S is increasing. In
particular this implies that both

S(l) := lim
y↓l

(y) ≥ −∞ and S(r) := lim
y↑r

(y) ≤ ∞ (1.25)

are well-defined.
In general, for a stopping time τ and a process X define the stopped process Xτ

by Xτ
t := Xτ∧t. Put

τa,b := inf{t : Xt = a or Xt = b},
τa := inf{t : Xt = a}, l < a < x0 < b < r

with the convention that inf{∅} = ∞. It is clear that S(X)τa,b is a bounded local
martingale and thus a real martingale which implies

Ex0 [S(Xt∧τa,b)] = E(S(X0)) = S(x0)

for all t. Using dominated convergence for t→∞ we find that Ex0 [S(Xτa,b)] = S(x0).
To connect back to X observe that (limt→∞ S(Xt) is well-defined by the martingale
convergence theorem)

S(Xτa,b) =


S(b) on τb < τa

S(a) on τa < τb

limt→∞ S(Xt) on τa,b =∞.
(1.26)

and as [Ja08] p. 114-115 shows that Px0(τa,b = ∞) = 0 for all x0 ∈]l, r[, it holds
that

S(x0) = Ex0 [S(Xτa,b)] = S(b)Px0(τb < τa) + S(a)Px0(τa < τb).

Using that (τb < τa) is the complement of (τa < τb) with probability 1 and rearrang-
ing gives

Px0(τb < τa) =
S(x0)− S(a)

S(b)− S(a)
. (1.27)

Note first, that this expression is well-defined as it yields the same result even if
S is transformed affinely. Secondly, it is a result concerning the original process X
reaching the values a or b. If S(x) = x the corresponding diffusion is said to be in
natural scale and (1.27) becomes particular simple. [RW00] p. 275-276 proof that
S(X) is always in natural scale.

Closely related to the scale function is the speed measure defined as

k(x) =
2

σ2(x)S′(x)
. (1.28)

If the scale function is affinely transformed to c1 +c2S, k has to be replaced by k/c2.
For a standard Brownian motion it is easily verified that (see Section 1.3.4.1)

S′(x) ≡ 1 implying S(x) = x and k(x) = 2.

This example helps grasp the results quoted in the following theorem, which is stated
using the so-called Green functions symmetric in x and y and given by

Ga,b(x, y) =
[S(x)− S(a)][S(b)− S(y)]

S(b)− S(a)
for a ≤ x ≤ y ≤ b.
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1.3. Continuous stochastic calculus

Theorem 1.6. Let X be a diffusion as in (1.21) with values in ]l, r[ and put x0 = X0.
For l < a < x < b < r it holds that Px0(τa,b =∞) = 0 and

Px0(τb < τa) = 1− Px0(τa < τ < b) =
S(x0)− S(a)

S(b)− S(a)
.

Further, for ϕ : [a, b]→ R bounded and measurable

Ex0

[∫ τa,b

0
ϕ(Xs)ds

]
=

∫ b

a
Ga,b ϕ(y)k(y) dy, (1.29)

and in particular (choosing ϕ ≡ 1)

Ex0 [τa,b] =

∫ b

a
Ga,b k(y) dy (1.30)

Proof. See [Ja08] p. 115-116.

Note that G, k and S all solely depend on b and σ. The additional notation is
simply a way to make (1.29) and (1.30) more readable. Applying Theorem 1.6 to
the standard Brownian motion, we find that

Px0(τb < τa) =
x0 − a
b− a

and in particular P0(τ1 < τ−1) =
1

2

unsurprisingly stating that a standard Brownian motion is equally likely to cross −1
or 1 first. Further,

Ex0 [τa,b] = (x0 − a)(b− x0) in particular E0[τ−1,1] = 1,

which interpretation is that the expected time for a standard Brownian motion to
hit either −1 or 1 is 1.

Recalling that we no longer have assumed b and σ to be Lipschitz we are still
in deep water concerning the existence and uniqueness of a diffusion on ]l, r[. The
context of the following theorem is a bit unclear since we have omitted a significant
part of the theory leading up to it. Nevertheless, it is easy to state and check.
Without further ado and omitting the proof:

Theorem 1.7. Fix ]l, r[ and assume that continuous b :]l, r[→ R and σ :]l, r[→]0,∞[
are such that

S(l) = −∞ or

∫ y

l
[S(z)− S(l)]k(z) dz =∞, y ∈]l, r[ (1.31)

S(r) =∞ or

∫ r

y
[S(r)− S(z)]k(z) dz =∞, y ∈]l, r[ (1.32)

If B is a standard Brownian motion on (Ω,F ,Ft,P) and U is F0-measurable with
values in ]l, r[ then

dXt = b(Xt)dt+ σ(Xt)dBt, X0 ≡ U

has a unique solution.

Proof. The result comes via the construction of regular diffusions using time changes
as done in [IM65] section 5.2, p. 167-171.
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1. Point processes, stochastic calculus, and renewal theory

This not only gives a taste of the fundamental use of the scale function and
speed measure, but also a very explicit condition to check for a given diffusion.
Recall that S and k solely depend on b and σ. The idea of Theorem 1.7 is that if one
succeeds in producing two functions b and σ along with two endpoint l and r that
satisfy both (1.31) and (1.32) then we are certain that a diffusion uniquely exists if
only we start it according to a U attaining values in ]l, r[.

We conclude the section with the following result of significant importance.

Theorem 1.8. The diffusion X has stationary initial distribution ν if and only if

K =

∫ l

r
k(x)dx <∞ (1.33)

in which case

ν(dx) =
1

K
k(x)dx. (1.34)

In particular it is necessary that X is recurrent, that is each level between ]l, r[ is
attained infinitely often in [t,∞[ for any t.

Proof. A partial proof is found in [Ja08] theorem 11.7 p. 123-124.

1.3.4. Diffusion examples

The most famous example of a diffusion is likely the Brownian motion, but there are
of course other or interest and some of these are used later on. Here we apply the
just-developed theory to obtain some properties. Many useful results are compiled
in [BS02].

1.3.4.1. Brownian motion

We very briefly consider the Brownian motion itself as no exposition of stochastic
calculus would be complete without it. It of course solves the SDE

dXt = dBt, X0 = 0.

We already know that S(x) = x and k(x) = 2. From Theorem 1.8 it is seen that no
stationary distribution for the Brownian motion exists.

A general Brownian motion solves with drift θ and variance σ

dXt = µXt + σdBt

with scale function

S(x) =

{
x if θ = 0,

−σ2

2θ e
−2θ/σ2x otherwise

(1.35)

and speed measure

k(x) =
2

σ2
e2θ/σ2x. (1.36)

The transition probabilities (see (1.55) are of particular interest to us and given
by

pt(x, y) =
1√

2πσ2t
e−

(x−y)2

2σ2 . (1.37)
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1.3. Continuous stochastic calculus

1.3.4.2. Geometric Brownian motion

The geometric Brownian motion (GBM) is described by

dXt = θXtdt+ aXtdBt, X0 = x0 > 0 (1.38)

with θ, a ∈ R. Our first claim is that it is always positive that is l = 0 and r =∞.
In order to show this we need the scale function and speed measure. Using formula
(1.24) we find for x > 0

S′(x) = exp

(
−2θ

a2
log x

)
= x−2θ/a2

and

S(x) =

{
a2

a2−2θ
x1−2θ/a2 2θ 6= a2,

log(x) 2θ = a2.

Hence the speed measure (1.28) becomes

k(x) =
2

a2
x2θ/a2−2.

We look for conditions on θ and a such that (1.31) and (1.32) are fulfilled in order to
use Theorem 1.7. To calculate S(0) recall from (1.25) the convention that S(0) :=
limy↓0 S(y). For 2θ 6= a2 it is seen that S(0) = 0 and for all y ∈]0,∞[∫ y

0
[S(z)− S(0)]k(z) dz =

∫ y

0
S(z)k(z)dz =

∫ y

0
Cz−1 dz =∞

for some C > 0. If 2θ = a2 then S(0) = ∞. The left border l = 0 therefore yields
no further restrictions.

For r = ∞, we see that S(∞) = ∞ if and only if 2θ ≤ a2 and otherwise
S(∞) = 0. The diffusion therefore stays on ]0,∞[ if 2θ ≤ a2, but what about
2θ > a2? Let this be the case and observe that S(x) < 0 for x > 0. Therefore∫ ∞

y
[S(∞)− S(z)]k(z) dz =

∫ ∞
y
−S(z)k(z)dz =

∫ ∞
y

C ′
1

z
dz =∞

with C ′ > 0. We conclude that the GBM in (1.38) is positive for all choices of θ and
a.

Hence we can rest-assured transform Xt with g(t, x) = log x using Itô’s formula,
which gives

d(logXt) =
dXt

Xt
− 1

2

1

X2
t

d[X]t =
dXt

Xt
− a2

2
dt = θdt+ adBt −

a2

2
dt

as d[X]t = a2X2
t dt. This differential form is equivalent to

[logXs]
t
0 = (θ − a2

2
)t+ aBt.

Rearranging and taking the exponential we obtain the solution

Xt = X0 exp

[
(θ − a2

2
)t+ aBt

]
, (1.39)

15



1. Point processes, stochastic calculus, and renewal theory

from which it is clear that the GBM is strictly positive.
Hence its expectation exists and is

E[Xt] = X0e
θt. (1.40)

To conclude the analysis of the GBM we quote [BS02] p. 606 for XT where
T ∼ expλ is independent of X. Thus we consider the GBM with exponential
stopping and its density is given by

Px(XT ∈ dz) =


λ

zσ2
√
η2+2λ/σ2

(
x
z

)√η2+2λ/σ2−η
dz x ≤ z

λ

zσ2
√
η2+2λ/σ2

(
z
x

)√η2+2λ/σ2+η
dz z ≤ x.

(1.41)

with η = θ
σ2 − 1

2 .

1.3.4.3. Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process (OU) is governed by the SDE

dXt = (a− bXt)dt+ σdBt, X0 = x0 (1.42)

with a ∈ R, and b, σ > 0.
The OU process can be made stationary . The stationary distribution is normal

with mean a/b and variance σ2

2b ; in particular the stationary density is

u(x) =
1√
π σ

2

b

· exp

(
(x− a/b)2

σ2

b

)
. (1.43)

The transition probabilities of the OU process are given by (see [BS02] p. 137)

(Xt+s|Xs = x)
D
= N

(
xe−bt +

a

b
(1− e−bt), σ

2

2b
(1− e−2bt)

)
(1.44)

such that their densities are

pt(x, dy) =
1√

π σ
2

b (1− e−2bt)
exp

(
−
[
y − xe−bt + a

b (1− e−bt)
]2

σ2

b (1− e−2bt)

)
dy. (1.45)

In particular

Ex0 [Xt] = x0e
−bt +

a

b
(1− e−bt). (1.46)

from which it is seen that the OU process is mean reverting with asymptotic expec-
tation a/b.

Using the parametrization of the OU-process dXt = θ(−Xtdt+ 2σdBt) for no-
tational convenience and again quoting [BS02] p. 522 the OU-process at exponential
stopping has density

Px(XT ∈ dz) =
λΓ(λ/θ)

θσ
√

2π
e(x2−z2)/4σ2

·D−λ/θ
(
−z + x− |z − x|

2σ

)
D−λ/θ

(
z + x+ |z − x|

2σ

)
dz

(1.47)
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1.3. Continuous stochastic calculus

where D−η(x) is the parabolic cylinder function given by ([BS02] p. 639)

D−η(x) = e−x
2/42−η/2

√
π
[ 1

Γ((η + 1)/2)

(
1 +

∞∑
k=1

η(η + 2) · · · (η + 2k − 1)

(2k)!
x2k

)

− x
√

2

Γ(η/2)

(
1 +

∞∑
k=1

(v + 1)(v + 3) · · · (v + 2k − 1)

(2k + 1)!
x2k

)]
.

1.3.4.4. Cox-Ingersoll-Ross process

The SDE

dXt = (a+ bXt)dt+ σ
√
XtdBt, X0 = x0 > 0 (1.48)

with a, b ∈ R and σ > 0 describes the Cox-Ingersoll-Ross process (CIR).1 We are
interested in determining parameter sets such that the process stays strictly positive
and is recurrent. It can be shown that they are 2a/σ2 ≥ 1, b < 0 or 2a/σ2 = 1,
b = 0; a fact we merely use here.

We first want to find the expectation value of the CIR-process, which exists
as it is a positive process. We wish to show that σEx0 [

∫ t
0

√
XsdBs] = 0, true by

the Itô isometry if Ex0 [
∫ t

0

√
Xs

2
ds] < ∞. To show this, define the stopping time

τn := inf{t : Xt = n}. Later on we let n→∞ and therefore assume without loss of
generality that x0 < n. Thus

Xτn∧t = x0 +

∫ τn∧t

0
a+ bXs ds+ σ

∫ t

0

√
Xs1(τn≥s) dBs.

A stochastic integral is always a local Martingale and using the stopping time τn it
becomes a true Martingale. Therefore

Ex0 [Xτn∧t] = x0 + Ex0

[∫ τn∧t

0
a+ bXs ds

]
= x0 + aEx0 [τn ∧ t] + bEx0

[∫ τn∧t

0
Xs ds

]
.

The case with b = 0 offers no additional information and we assume that b < 0.
Letting n → ∞ we see that Ex0 [τn ∧ t] → t and Ex0 [

∫ τ∧t
0 Xs ds] → Ex0 [

∫ t
0 Xsds],

which is the entity we want to show is finite. The left-hand side is positive as the
process is positive. Thus Ex0 [

∫ t
0 Xs ds] =∞ leads to a contradiction as b < 0 and the

right-hand side would therefore be −∞. Hence Ex0 [
∫ t

0 Xs ds] <∞ and we conclude

that Ex0 [
∫ t

0

√
Xs dBs] = 0. Knowing this we get

Ex0 [Xt] = E[x0] +

∫ t

0
a− bEx0 [Xs]ds

implying
d

dt
E[Xt] = a− bE[Xt], X0 = x0.

This is an ODE with solution

Ex0 [Xt] = x0e
bt − a

b
(1− ebt). (1.49)

The CIR-process has asymptotic expectation a/b if b < 0.

1See [Ja08] Example 11.8 for details
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1. Point processes, stochastic calculus, and renewal theory

Using Theorem 1.8 one finds that the CIR-process is stationary if and only if

2a

σ2
≥ 1 and b < 0 (1.50)

with stationary density

u(x) =
(−2b/σ2)2a/σ2

Γ(2a/σ2)
x2a/σ2−1 exp

(
2b

σ2
x

)
, x > 0. (1.51)

This is recognized as a gamma distribution with shape parameter α = 2a/σ2 and
rate parameter β = −2b/σ2.

1.4. Markov processes; stationarity and the infinitesimal
generator

A Markov process in continuous time is a stochastic process X = (Xt)t≥0 with the
Markov property. Loosely stated this means that the future only depends on the
present or at every t a Markov process starts a fresh. We define the transition
probability at time t denoted by Pt as

Ptf(Xs) := E[f(Xt)|Xs] (1.52)

with densities
pst(x, dy) := P(Xt ∈ dy|Xs = x). (1.53)

Definition 1.7. A process X on (Ω,F ,Ft,P) is Markovian if for all t it holds for
any 0 ≤ s ≤ t that there exists a transition probability pst on G such that

P(Xt ∈ C|Fs) = pst(Xs, C), G ∈ G. (1.54)

It is further called time-homogeneous if it only depends on t − s in which case we
are tempted to write

pt(x, dy) := P(Xt+s ∈ dy|Xs = x). (1.55)

A fundamental result is the Chapman-Kolmogorov equation stating that

Pt+s = PtPs = PsPt, s, t ≥ 0

from which it is seen that the Pt’s make up a semi group.2

Definition 1.8 (Stationarity). A continuous time process X is called stationary if
we for any n ∈ N and for any selection of n time points 0 ≤ t1 < . . . < tn and s > 0
have

(Xt1 , . . . , Xtn)
D
= (Xt1+s, . . . , Xtn+s). (1.56)

Two examples of stationary processes at each end of the spectrum are Y =
(Yt)t≥0 where all Yt are iid and Z = (Zt)t≥0 with Zs1 = Zs2 for all s1 and s2.

Of particular interest in this thesis is the study of stationarity for Markov pro-
cesses. For such a process the above definition is equivalent to Xt having distribution
ρ for all t if the initial distribution, that is the distribution of X0, is ρ. We then call
ρ the stationary distribution or the invariant distribution.

2A semi group differs from a group in that for each element there is no guarantee that an inverse
exists.
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1.5. Piecewise deterministic Markov processes

Definition 1.9 (Infinitesimal generator). Let the infinitesimal generator A of a
Markov process X be defined as the operator

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
(1.57)

for suitable f . Let D(A)(x) be the set of functions for which the limit exists at x,
while D(A) = ∩xD(A)(x) is the set of functions where the limit exists for all x.

Further, we shall define a determining class as a class D of measurable and
bounded functions such that if two probability measures ρ1 and ρ2 satisfies ρ1(h) =
ρ2(h) for all h ∈ D then ρ1 = ρ2. It is clear that h needs to be measurable. If h
was not required to be bounded then ρ1(h) and ρ2(h) might both attain the value
∞ despite ρ1 6= ρ2. It is well-known that C∞0 (R) is dense in L2(R) (see Theorem
A.2) and hence C∞0 (R) is a determining class for probability measures on L2(R).

While (1.57) seems inaccessible at first, studying the particular case of an Itô
diffusion sheds some light onto matters. Recall that the integration form of a diffu-
sion is given by

Xt = X0 +

∫ t

0
b(Xs) dx+

∫ t

0
σ(Xs) dBs

where the Itô formula for f ∈ C2(R) gives

f(Xt) = f(X0) +

∫ t

0
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs) ds+

∫ t

0
f ′(Xs)σ(Xs) dBs.

Consider f(X) and condition on X0 = x. Take expectation to get

Ex[f(Xt)] = f(x) + Ex

[∫ t

0
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs) ds

]
recalling that the expectation of a stochastic integral with respect to the Brownian
motion is 0 under suitable conditions. Inserting this into (1.57) yields

Af(x) = lim
t↓0

1

t

∫ t

0
Ex

[
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)

]
ds

= Ex

[
b(X0)f ′(X0) +

1

2
σ2(X0)f ′′(X0)

]
= b(x)f ′(x) +

1

2
σ2(x)f ′′(x).

This is very comforting! In (1.22) we introduced the differential operator A on
f ∈ C2(R) given by Af = bf ′+ 1

2σ
2f ′′ and the above shows that for such f the two

coincide.
Interestingly, it turns out that a sufficient and necessary condition for ν to be

an invariant distribution is
ν(Af) = 0, f ∈ C (1.58)

with C ⊂ D(A) a determining class.

1.5. Piecewise deterministic Markov processes

In Section 1.2 we constructed MPPs and it turns out that from any stochastic process
mapping into (G,G) it is possible to construct an MPP. This is done simply by letting
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1. Point processes, stochastic calculus, and renewal theory

Tn be the time of the nth jump and Yn = XTn if the jump happens in finite time.
A process is called piecewise deterministic (PDP) if one can reconstruct it from the
induced MPP, that is its behavior between jumps is deterministic. The properties
and construction of such processes—specifically finding a sufficient condition for a
PDP to be Markovian—is the content of this section.

Regardless of the properties of a process it is clear that a collection of functions
is needed if we at all should hope for X to be a PDP. Denoting the initial state of
X by x0 ∈ G, we assume that for any n ∈ N0 there exists a collection of G-valued

functions f
(n)
zn|x0(t) of zn for t ≥ tn if tn <∞ such that

Xt = f
〈t〉
Z〈t〉|x0

(t), where 〈t〉 := N t. (1.59)

Hence by knowing the initial state, tracking the jump times and the intermediate
marks up to t we know which of the functions describes Xt.

Before proceeding, we define what it means to be Markovian, where after The-
orem 1.9 offers a sufficient condition for a process X to be Markovian.

The process X we wish to construct has to map into G and hence the mark
space for the MPP (T ,Y) is chosen such that E = G.3 Naturally, the description

involves the collection of f
(n)
zn|x0 as well as the kernels for the time points and marks.

Not surprisingly, any sufficient condition constrains the transition probabilities for
the time points as well as the mark space. Before proceeding it turns out that more

can be said about the specific structure of the collection of the f
(n)
zn|x0 ’s.

We know that for t ≥ s, Xt = f
〈t〉
Z〈t〉|x0

(t) must only depend on Xs = f
〈s〉
Z〈s〉|x0

(s),

hence some function ϕst : G→ G exists such that

f
〈t〉
Z〈t〉|x0

(t)︸ ︷︷ ︸
=Xt

= ϕst

(
f
〈s〉
Z〈s〉|x0

(s)︸ ︷︷ ︸
=Xs

)
. (1.60)

Particularly, for tk being the time point for the kth jump implying f
〈tk〉
Z〈tk〉|x0

(s) = yk

as a boundary condition, it holds that

f
〈tk〉
Z〈tk〉|x0

(t) = ϕtkt (yk) , tk ≤ t < tk+1.

That is, the behavior of the process is determined by the a deterministic function
up until the next jump. While this identity only holds between tk and tk+1 it
can be generalized to any u ≥ t as tk+1 is stochastic and it might even be that
tk+1 = ∞. Using the identity, plugging into (1.60) and extrapolating to any time
points s ≤ t ≤ u with y ∈ G, we obtain

ϕsu(y) = ϕtu(ϕst(y)),

implying that ϕtt is idempotent. From the current context it is seen that specifically
ϕtt(y) = y for all y ∈ G. Equivalently, summarizing

ϕsu = ϕtu ◦ ϕst, ϕtt = id, (1.61)

where ϕsu, s ≤ u, can be thought of as the behavior from s to u. In the time-
homogeneous case, (1.61) becomes particularly simple reducing to

ϕs+t = ϕs ◦ ϕt, ϕ0 = id, (1.62)

3Assume that G, now serving as mark space, is a Borel space. In applications usually isomorphic
to Rn.
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1.5. Piecewise deterministic Markov processes

which shows that ϕs and ϕt commutes. Using ϕ0 as neutral element the set {ϕt, t ≥
0} with function composition as binary operator defines an Abelian semi group.
Two examples of such functions are the step function ϕs(x) = x and the exponential
behavior with ϕs(x) = xeKs for some K ∈ R.

This concludes our analysis of the piecewise deterministic part of the process.
Nearly ready to formulate Theorem 1.9 on the sufficient conditions for a PDP to
be Markovian, we introduce some additional notation to aid handling the Markov
kernels. The kernels use transition intensities qt(x,C) for x ∈ R0 and C ∈ G.
This intensity is decomposed into a part qt(x) triggering the jumps and a part
rt(x,C) deciding where the process jumps to such that qt(x,C) = qt(x)rt(x,C).
The conditions below are referred to as the intensity conditions .

• qt(x) := qt(x,G) simply measures any jump from x at time t occurs as all marks
are contained in G and it is referred to as the total intensity. We require that
(x, t) 7→ qt(x) is measurable and

∫ t+h
t qs(ϕts(x))ds < ∞ for all (x, t) where

h(x, t) > 0 can depend on (x, t). This is referred to as qt(x) being right locally
integrable.

• We require that rt for each t is a Markov kernel (t, x) 7→ rt(x,C). It is seen
as the conditional probability on G such that rt(x,C) is the probability that
a jump leads to C given that it occurs from x at time t.

• We require rt(x, {x}) = 0 where t ∈ R0 and x ∈ G ensuring a genuine jump
occurs.

At last, we are equipped to investigate the existence of piecewise deterministic
Markov procecesses (PDMPs). The first part of the theorem describes the general
case, whereas the second part focuses on the time-homogeneous case.

Theorem 1.9 (PDMP condition).

• General case: Let measurable ϕ : {s ≤ t} × G → G satisfy (1.61) with t 7→
ϕst(y) continuous on [s,∞[ for all s ∈ R0 and y ∈ G. Further, suppose that
qt and rt satisfy the intensity conditions. Then the PDP X given by

X0 = Y0 ≡ x0 and Xt = ϕT〈t〉,t(Y〈t〉) (1.63)

is in fact a PDMP that does not depend on x0. The Markov kernels are given
by:

P
(0)
|x0(t) = exp

(
−
∫ t

0
qs(ϕ0s(x0))ds

)
, t ∈ R0 (1.64)

π
(0)
t|x0(C) = rt(ϕ0t(x0), C), t ∈ R0, C ∈ G, (1.65)

and

P
(n)
zn|x0(t) = exp

(
−
∫ t

tn

qs(ϕtns(yn))ds

)
, (1.66)

π
(n)
zn,t|x0(C) = rt(ϕtnt(yn), C), t ∈ R0, C ∈ G, (1.67)

with n ∈ N, t1 < . . . < tn < t, and yi ∈ G.
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1. Point processes, stochastic calculus, and renewal theory

• Time-homogeneous case: A PDMP X satisfying the former requirements is
time-homogeneous if in addition qt and rt do not depend on t and if there
exists measurable ϕ̃ satisfying (1.62) with t 7→ ϕ̃t continuous such that

ϕ̃t−s ≡ ϕst. (1.68)

Note, that as ϕ and ϕ̃ operate on different spaces we usually write ϕ : R0 ×G
instead of ϕ̃ without running risks of ambiguity. Further, the Markov kernels from
(1.66) and (1.67) in the time-homogeneous case reduce to:

P
(n)
zn|x0(t) = exp

(
−
∫ t−tn

0
q(ϕs(yn))ds

)
, (1.69)

π
(n)
zn,t|x0(C) = r(ϕt−tn(yn), C), t ∈ R0, C ∈ G. (1.70)

A generalization of this theorem treating the case where the P (n) do not have den-
sities exists and the reader is referred to Theorem 7.3.2 in [Ja06] p. 157.

Before proceeding, it is worth dwelling on a few of the observations established
above. Despite the apparent complicated nature of the initial deterministic function

f
〈t〉
Z〈t〉|x0

, restricting attention to cases where the resulting process becomes Markovian

simplifies matters immensely. Particularly in the time-homogeneous case we end up
with a single function ϕs containing complete information about the behavior of the
process between jumps. Further, Theorem 1.9 provides simple sufficient conditions
to check. Finally, it should be noted that the expression for (1.66) and (1.67) as well
as (1.69) and (1.70) do not dependent of x0.

1.6. Renewal theory

The exposition of this section is primarily based on [KT75] with some stray ideas
taken from [Ro83].

Before developing the rigorous mathematical theory a motivating example is
offered describing stochastic processes who at stochastic times begin anew. As such
they are on one hand a generalization of the Poisson process while on the other hand
a special case of SPPs/MPPs.

Consider a light bulb placed at time T0 = 0. The light bulb fails at some
stochastic time T1 whereupon it is immediately replaced with a second light bulb of
the same make. This second light bulb fails after V2, that is at time T2, and is again
replaced with an identical light bulb.

Formalizing the experiment, Vk is viewed as a strictly positive iid random vari-
ables with distribution F and, if it exists, density f such that F (0) = 0 and even
F (0+) = 0 measuring4 the interarrival times between the kth and k + 1th event.
Tn :=

∑n
k=1 Vk is the time of the nth occurrence while Nt := sup{n : Tn ≤ t}

gives the number of event up to and including t is of central interest. The following
relation holds

Nt ≥ n ⇐⇒ Tn ≤ t. (1.71)

The process N = (Nt)t≥0 is called a renewal process. The expectation of the inter-
arrival times is also used extensively and we put µ := E[V1].

4The latter being equivalent to stating that there can be no explosions, that is we consider a
genuine point process.
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1.6. Renewal theory

Remark It is apparent how the renewal theory fits into the point process framework
described earlier. Our strategy in attacking jump-diffusions is to start a probabilis-
tic replica of a given diffusion—corresponding to the deterministic pieces of the
PDMP—at each renewal. This section shows that renewal processes can be made
stationary and this is a cornerstone of the theory developed in the following chapters.

A key component of renewal theory is to study the properties of N(t) depending
on the distribution of the interarrival times F . Of particular interest is the renewal
function given by

m(t) = E[Nt]. (1.72)

Knowing F it is easy to find a closed description of Tn’s distribution, say Fn, namely
the recurrence relation

Fn(x) =

∫ x

0
Fn−1(x− y)dF (y) = (Fn−1 ? F )(x) = Fn? (1.73)

which is equivalent to (Fn−1∗f)(x) if F has a density (see (A.3) and (A.4) in Section
A.2 for the definition of “∗“ and “?.“). Using (1.71) it follows that P(Nt ≥ k) = Fk(t)
and therefore

m(t) =

∞∑
k=1

P(Nt ≥ k) =

∞∑
k=1

Fk(t), (1.74)

where the first equality follows from (1.2). We wish to show that the sum converges
and is finite. From (1.73) it is seen that

Fn = (Fn−k ? Fk)(t) ≤ Fn−k(t)Fk(t)

as all Fk’s are distribution function and therefore increasing. In particular for fixed
r it is seen that Fnr+k(t) ≤ (Fr(t))

n · Fk(t) for 0 ≤ k ≤ r − 1 such that

m(t) =
∞∑
k=1

Fk =

(
r−1∑
k=1

Fk

)
·
∞∑
n=0

(Fr(t))
n, t > 0

where the first sum is finite and the second sum is a geometric series converging if
and only if Fr(t) < 1. As we have assumed F (0+) = 0 (no explosions) it follows
that for every t some r is large enough such that this is true and we conclude that
the sum, and hence the renewal function, is finite.

Other associated random variables of interest are the current life δt and excess
lifetime γt at time t. These are given by

δt := t− TNt and γt := TNt+1 − t. (1.75)

The intuition is that δt looks “backward” and measures the current life of the light
bulb, while γt looks “forward” and gives the remaining lifetime. As a side note, their
sum is quite naturally called the total life and denoted by βt.

1.6.1. Renewal equations and the elementary renewal theorem

Having the initial setup in place we are now ready to prove some interesting results
and first wish to prove

m(t) = F (t) +

∫ t

0
m(t− y)dF (y) = F (t) + (m ? F )(t), t ≥ 0. (1.76)
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1. Point processes, stochastic calculus, and renewal theory

Begin by considering

E[Nt|T1 = s] =

{
0 if s > t

1 +m(t− s) if s ≤ t

which is true since the first event happens at time s then Nt must necessarily be
0 for all t < s and so must the expectation of Nt. If instead the first event has
already occurred then the probability for another event occurring must be m(t− s)
as the time between events are iid. Arguments of this type are ubiquitous in renewal
theory and referred to as renewal arguments. Using the law of total probability, we
proceed to find

m(t) =

∫ ∞
0

E[Nt|T1 = s]dF (s) =

∫ t

0
1 +m(t− s)dF (s) = F (t) + (m ? F )(t)

as desired. Equations of the type (1.76) are called renewal equations and are treated
in the following theorem.

Theorem 1.10. If g is a bounded function there exists a unique function G, bounded
on finite intervals, and satisfying

G(t) = g(t) +

∫ t

0
G(t− y)dF (x) = g(t) + (G ? F )(t). (1.77)

This G is

G(t) = g(t) +

∫ t

0
g(t− x)dm(x) = g(t) + (g ? m)(t) (1.78)

with m the renewal function corresponding to F .

Proof. Existence and uniqueness needs to be proved. Considering the existence of
the solution first it is shown that G in (1.78) actually solves (1.77) and is bounded
on finite intervals.

Using (1.74) it follows that

G(t) = g(t) + (g ? m)(t) = g(t) + (g ? F )(t) + (g ?

∞∑
k=2

Fk)(t)

= g(t) +
(

(g + g ?

∞∑
k=1

Fk) ? F
)

(t) = g(t) + (G ? F )(t),

that is G solves (1.77). To check that G is indeed bounded on finite intervals [0, T ]
observe

sup
0≤t≤T

|G(t)| ≤ sup
0≤t≤T

|g(t)|
(

1 +

∫ T

0
dm(t)

)
<∞

since g is assumed bounded and the renewal function is finite as well.
For uniqueness of the solution observe that as G solves (1.77) it inductively

follows that

G = g + (g ? F + (G ? F ) ? F ) = . . . = g + (g ?

n−1∑
k=1

Fk) + (G ? Fn)

By assumption g is bounded and as m(t) =
∑
Fk it follows that g ? m(t) is an

integrable upper bound for (g ?
∑n−1

k=1 Fk) the latter therefore converging to (g ? m)
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1.6. Renewal theory

for n→∞. It thus suffices to show that limn→∞ |(G?Fn)(t)| = 0 for fixed t. Hence
consider

|(G ? Fn)(t)| ≤ Fn(t) · sup
0≤x≤t

G(x)

Since it has been shown that limn→∞ Fn(t) = 0 and as G is bounded on finite
intervals implying that the above tends to 0 for n → ∞. It has therefore been
shown that any G bounded on finite intervals satisfying (1.77) must be of the form
(1.78).

On first sight it might seem a rather peculiar idea to study equations like (1.77).
Let us for a moment imagine that we can find a G of interest such that (1.77) is
fulfilled with g ≡ K, a constant function. Plugging into (1.78) would give the
relation G(t) = K(1 +m(t)) thus linking G to the renewal function in a very simple
way. Depending on G this approach is potentially useful for exploring properties of
the renewal function.

As a specific application of this idea let G(t) = E[TNt+1]. A renewal argument
conditioning on the time of the first jump gives

E[SNt+1|T1 = s] =

{
s if t < s

s+G(t− s) if t ≥ s

such that the law of total probability gives

G(t) =

∫ ∞
0

E[SNt+1|T1 = s]dF (s) =

∫ ∞
0

sdF (s) +

∫ s

0
G(t− s)dF (s)

= µ+ (G ? F )(t)

remembering µ = E[V1] and we conclude

E[TNt+1] = µ(1 +m(t)). (1.79)

This is used to prove the following theorem.

Theorem 1.11 (Elementary Renewal Theorem). Let m(t) be the renewal function
linked to V1, . . . positive iid random variables with µ = E[V1] <∞. Then

lim
t→∞

m(t)

t
=

1

µ
. (1.80)

Intuition Returning to the light bulb example the interpretation of (1.80) is that
in the long run we would expect the average rate at which to change the light bulbs
to equal the average life time of a light bulb. Thus (1.80) can be thought of as a
sort of law of large numbers for renewal processes.

Proof. First it is proved that

lim
t→∞

inf
m(t)

t
≥ 1

µ
.

This easily follows from the fact that t < SNt+1 implying by (1.79) that t < µ(1 +
m(t)) such that

m(t)

t
>

1

µ
− 1

t
.
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1. Point processes, stochastic calculus, and renewal theory

To prove the opposite inequality is more involved and an auxiliary truncated renewal
process is needed. Define for arbitrary C > 0

V C
i =

{
Vi if Vi < C

C if Vi ≥ C
.

Note, that V C
i is in fact a genuine renewal process as the time between renewals

are strictly positive and iid. Hence TCn , NC
t , mC(t) and µC are all well-defined and

(1.79) gives
E[SC

NC
t +1

] = µC(1 +mC(t)). (1.81)

As the time between events for the truncated process can be at most C it follows
that t + C ≥ SC

NC
t +1

. As furthermore TCi ≤ Ti it must be that mC(t) ≥ m(t) and

thus from (1.81) it is concluded that

t+ C ≥ µC(1 +m(t)).

Rearranging and taking the limsup gives

lim
t→∞

sup
m(t)

t
≤ lim

t→∞
sup

1

µC
+

1

t

(
C

µC
− 1

)
=

1

µC
(1.82)

Unsurprisingly by monotone convergence using (1.1),

µC =

∫ ∞
0

1(0,C)(t)x+ 1(C,∞)(t)CdF (x)→
∫ ∞

0
xdF (x) = µ

for C →∞. By (1.82)

lim
t→∞

sup
m(t)

t
= lim

C→∞
lim
t→∞

sup
m(t)

t
≤ lim

C→∞

1

µC
=

1

µ

establishing the opposite inequality and concluding the proof.

1.6.2. Key renewal theorem

We are now ready to formulate the key renewal theorem crucial for the models we
build in Chapter 2 and 3. Before stating the theorem itself we need the following
definitions

Definition 1.10. A distribution is said to be arithmetic if the only sets of positive
measure are in {0,±j,±2j, . . .}. The largest such j that captures all values of the
distribution is called the span of the distribution.

Thus a continuous distribution is not arithmetic while a discrete distribution
with possible values in 0, 1, . . . is arithmetic with span 1. We only use non-arithmetic
distributions in this thesis.

Definition 1.11. A function g : [0,∞)→ R is said to be directly Riemann integrable
if for any δ > 0 and n = 1, 2, . . .

s = δ

∞∑
n=1

mn and s = δ

∞∑
n=1

mn (1.83)

both converge absolutely and s− s = 0 for δ → 0 where

mn := min{g(t), (n− 1)δ ≤ t ≤ nδ},
mn := max{g(t), (n− 1)δ ≤ t ≤ nδ}.
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1.6. Renewal theory

Note that this is equivalent to g being Riemann integrable on every compact
set and either

∞∑
n=0

sup{|g(t)| : n ≤ t ≤ n+ 1} <∞ or

∫
|g|dt <∞.

Theorem 1.12 (Key Renewal Theorem). Let F be the distribution function of a
positive random variable with finite mean µ. Suppose g is directly Riemann integrable
and G solves

G(t) = g(t) + (G ? F )(t).

• i) If F is not arithmetic then

lim
t→∞

G(t) =

{
1
µ

∫∞
0 g(x)dx if µ <∞,

0 if µ =∞.
(1.84)

• ii) If F is arithmetic with span j, then for all C > 0,

lim
n→∞

G(C + nj) =

{
j
µ

∑∞
l=0 g(C + lj) if µ <∞,

0 if µ =∞.
(1.85)

Proof. See [Fe66] p. 346-351. Theorem 2 states the result in the above notation and
is proved to be equivalent to Theorem 1.

Although not apparent at first the theorem generalizes the elementary renewal
theorem. An equivalent formulation is presented in [KT75] p. 192 more suitable
for that purpose, but instead a few quick calculations and application of the above
formulation gives us the desired generalization.

We wish to show that for arbitrary h > 0

lim
t→∞

m(t+ h)−m(t) =
h

µ
(1.86)

which intuitively can be thought of as that the number of renewals over an interval
of length h is h/µ as long as the renewal process has been going for a long time,
that is t tends to infinity.

Consider g(t) = 1(0,h)(t). Theorem 1.10 implies that G(t) = m(t + h) −m(t)
for t > h and if F is non-arithmetic the key renewal theorem gives

lim
t→∞

m(t+ h)−m(t) = lim
t→∞

G(t) =
h

µ

with the convention that h/µ = 0 if µ = ∞. If F instead is arithmetic an analog
argument shows that (1.86) continues to hold as long as h is a multiple of the span
j for F .

This does not really imply the elementary renewal theorem yet, but is rather
an “infinitesimal” or “differential” version if one will. It can though be used to
approximate and establish m(t) ∼ t/µ.
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1. Point processes, stochastic calculus, and renewal theory

Distribution of excess lifetime There are many applications of the key renewal
theorem and particularly relevant for what follows is that it allows us to find the
limiting distribution of the excess lifetime γt defined in (1.75) as t → ∞. Let
Gz(t) = P(γt > z) and use a renewal argument to find

P(γt > z|T1 = s) =


1 if s > t+ z,

0 if t+ z ≥ s > t,

Gz(t− s) if t ≥ s > 0.

By the law of total probability

Gz(t) =

∫ ∞
0
P(γt > z|T1 = s) dF (s) =

∫ ∞
t+z

dF (s) + (Gz ? F )(t)

= 1− F (t+ z) + (Gz ? F )(t).

We wish to apply the key renewal theorem in order to find the limiting distri-
bution for t→∞ and hence we must assume that 1−F (t+ z) is integrable (on the
positive axis). Put g(t) = 1−F (t+ z) then g is continuous, bounded, and Riemann
integrable on every compact set. Assuming µ <∞∫ ∞

0
|g(t)| dt =

∫ ∞
z

1− F (x) dx ≤ µ

shows that g is DRI. The key renewal theorem now yields for F non-arithmetic

lim
t→∞

P(γt > z) = µ−1

∫ ∞
z

1− F (x) dx, z > 0. (1.87)

Similarly using renewal arguments, the limiting distribution of the current life δt
and total life βt can be found to be

lim
t→∞

P(δt > z) = µ−1

∫ ∞
z

1− F (y) dy = lim
t→∞

P(γt > z) (1.88)

and with Fβ the limit distribution function of the total life

Fβ(z) := lim
t→∞

P(βt ≤ z) = µ−1

∫ z

0
y dF (y). (1.89)

In particular it is important to note that the limiting distribution for the excess
lifetime and current life are identical.

This might be surprising and we offer two heuristic arguments.
First, consider a double infinite renewal process, that is a renewal process over

the entire real axis such that Tn is defined for all n ∈ Z. If the limiting distribution is
chosen such that this process is stationary the distribution of the excess lifetime is the
same for all t. But the reversed of this renewal process (that is “played backwards”)
is again a stationary renewal process with the same excess lifetime distribution. By
reversing the process we switch the meaning of excess lifetime and current life; thus
the distribution of these must be equal.

Another argument is to fix a certain time point 0 � t0 such that the process
has been running for a very long time and is close to its limiting distribution. We
inspect the renewal process at t0 and observe that

probability of renewal at t0 − s equals probability of renewal at t0 + s
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1.6. Renewal theory

as the interarrival times are iid. The left-hand side event is the current life time
being s while the right-hand side event is the excess life time being s. This gives
that the distribution of the current and excess life time must both equal the limit
distribution.

An interesting peculiarity is the inspection paradox.5 Consider the mean of the
total life, which by (1.89) is given as

E[ lim
t→∞

βt] =

∫ ∞
0

z dFβ(z) = µ−1

∫ ∞
0

z2 dF (z) ≥ µ−1

(∫ ∞
0

z dF (z)

)2

= µ

since E[V 2
1 ] ≥ E[V1]2 (non-negativity of variance or Cauchy-Schwarz inequality) with

strict inequality prevailing unless F is degenerate. That is the mean of the total life
is strictly larger than the mean interarrival time. Or, in everyday terms, if one
decides to measure the current age and the remaining lifetime at a specific time
point t it is on average strictly larger than the average time between renewals.

The elementary renewal theorem being a sort of law of large numbers we men-
tion that an analogy to the central limit theorem exists as well. The proof is short,
see [KT75] p. 205.

1.6.3. Stationary renewal processes

So far we have assumed that the replacement experiment starts immediately with
all the Vi’s iid, but it is reasonable to allow V1 to follow a different distribution.
Think of the light bulb example where the first light bulb has already been in place
for some time and therefore, even though of the same make as the following, it has
a different distribution. Such a process is called a delayed renewal process and we
denote the distribution function of V1 by H still independent of V2, . . . In contrast a
0-delayed renewal process may be prefixed with pure and it is seen that a renewal
process is pure if and only T0 = 0.

We associate a renewal function mD(t) with the delayed renewal process and in
general mD(t) 6= m(t) =

∑
Fk(t). As we only mangle with the first distribution one

would think that the asymptotic properties of the renewal function stays the same,
which is indeed the fact and for example

lim
t→∞

mD(t+ h)−mD(t) =
h

µ
, h > 0

holds.

Now what if we choose H(x) := µ−1
∫ x

0 1−F (y)dy = P(γt ≤ x)? This means we
are starting the renewal process in such a way that the first light bulb fails according
to the limiting distribution of the excess lifetime and one would expect some nice
stationary properties. We show that for this delayed renewal process

mD(t) =
t

µ
and P(γDt ≤ x) = H(x), (1.90)

that is, the results we know to hold asymptotically are indeed identities and in
particular P(γDt ≤ x) is independent of t. It therefore makes sense to call such a
renewal process stationary with stationary distribution H. It can be shown that
F (x) = H(x) characterizes the Poisson process among renewal processes.

5Sometimes “waiting time paradox.”
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1. Point processes, stochastic calculus, and renewal theory

Using a well-known renewal argument E[ND
t |T1 = s] = 1s<t(t)(1 + m(t − s))

used to show mD(t) = H(t) + (H ?m)(t), that is the unique solution of the renewal
equation

mD(t) = H(t) + (mD ? F )(t).

The solution is unique and it therefore suffices to check that mD(t) = t/µ satisfies
the equation above.

H(t) + (mD ? F )(t) = µ−1t+ µ−1

(
−
∫ t

0
F (x) dx+

∫ t

0
t− x dF (x)

)
= µ−1t

since the factor in the braces equals zero which is seen using integration by parts

−
∫ t

0
F (x) dx = −tF (t) +

∫ t

0
x dF (x) = −t

∫ t

0
dF (x) +

∫ t

0
x dF (x).

Showing P(γDt ≤ x) = H(x) is a bit more lengthy and therefore omitted here, see
[KT75] p. 200.

We wish to build a bit of intuition around this and a generic limiting argument
might shed some light on the above result. If the renewal process has a limiting
distribution and we start the process with this particular distribution it heuristically
amounts to considering the original process for t0 very large and start observing
from there. In other words, by choosing the limiting distribution to begin with we
have ensured that the convergence has already taken place and as the convergence
also holds for the delayed process “we must already have arrived” at the limiting
distribution.

1.6.4. Regenerative processes

Finally, we briefly mention the vast class of regenerative processes first mentioned
by Feller [Fe66] p. 365 (discrete time only) and later made more precise by and
investigated in depth by [Mi72]. They are of tremendous importance to this thesis
and ubiquitous in Chapters 2 and 3.

Generally, a regenerative process is a process where with probability one there
exists a time T1 such that the process is started anew (regenerated) with a proba-
bilistic replica of itself. This implies that time points T2, T3, . . . exist. The ’pieces’
between the time points might be of virtually any nature and in case of diffusions a
regenerative process is a jump-diffusion.

A regenerative process is stationary if the resetting times are governed by a
stationary renewal process. We only give a heuristic argument for this fact considered
well-known in the literature. Consider two points s and t and the distribution of
the process at these times Hs and Ht. As the pieces of the regenerative process are
probabilistic replicas Hs and Ht can only be different if the distribution of the current
age of the regenerative piece containing s and t is different. But with the underlying
renewal process being stationary the current lifetime has the same distribution at
all times. Hence Hs and Ht must describe the same distribution.
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CHAPTER 2

Jump-diffusion models using jump targets

This chapter deals with finding the stationary distribution of a particular class of
jump-diffusion models. It is characterized by iid jumps independent of the position
of the process, while the process between jumps is a diffusion. The particulars of
the setup is described in Section 2.1. That a unique stationary distribution exists
for a large subset is shown in Section 2.2.

In some cases one can find an explicit expression for the stationary initial dis-
tribution. Considering the Brownian motion as the diffusion part, the stationary
distribution is found in Section 2.3 using renewal theory, while Section 2.4 and 2.5
uses the infinitesimal generator. Section 2.6 formulates a criterion for diffusions in
general that any stationary distribution must satisfy and Section 2.7 treats diffusions
which themselves have stationary initial distributions.

2.1. The model

Loosely speaking the process X = (Xt)t≥0 is pieced together using parts of diffusions
X(i) between jump times Ti−1 and Ti for i ∈ {1, 2, . . .}. The following model is
referred to as a jump-diffusion with jump targets.

The ith jump target has distribution Yi, i ∈ {0, 1, . . .}, where Y0 is the boundary
condition for the very first diffusion. The Yi’s are iid for all i. They are distributed
according to G and with density, when it exists, given by g.

Let each X(i) be a diffusion with fixed measurable functions b and σ such that
each X(i) solves the SDE

dX
(i)
t = b(X

(i)
t )dt+ σ(X

(i)
t )dBt, X

(i)
0 = Yi−1. (2.1)

Thus the X(i)’s are probabilistic replica of the same diffusion if and only if the
Yi’s follow the same, possible degenerate, distribution for all i. These make up the
continuous parts of the jump-diffusion X.

The jumps are comprised of two ingredients: i) the target distribution of the
jump, and ii) a point process triggering the jumps.

The jump times are denoted by T0, T1, T2, . . . with T0 = 0. They are chosen such
that the interarrival times T1−T0, T2−T1, . . . are independent and from the second
onwards distributed according to an intensity λ(x) > 0. The resulting distribution
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2. Jump-diffusion models using jump targets

function for the interarrival times is denoted by F and on occasion by FG when the
distribution of Yi needs to be specified.

The interarrival times Vi := Ti − Ti−1, i ≥ 1, from the second jump onwards
are identically distributed with cumulative distribution function F as the diffusion
pieces are probabilistic copies. We assume that PG(T1 < ∞) = 1 such that a
jump in finite time guaranteed. Equivalently the assumption is often stated as
µ := EG[Vi] = EG[T1] < ∞. Often jumps from a Poisson process are considered in
which case G becomes superfluous in the notation EG[T1].

It is clear that when conditioning on X(1) with X
(1)
0 = Y0 we obtain

PG(T1 > t|X(1)) = exp

(
−
∫ t

0
λ(X(1)

s )ds

)
. (2.2)

After the first jump a new and independent (of everything) copy of the diffusion

X(2) is created with starting point determined by Y1, that is X
(2)
0 = Y1. Obviously,

it therefore suffices to condition on (X
(1)
t )0≤t≤T1 in (2.2). Having knowledge of X(2)

and the initial value Y1 gives information about the second waiting time, namely

P(V2 > t|X(2), Y1) = exp

(
−
∫ t

0
λ(X(2)

s )ds

)
.

Continuing inductively, we can glue together a jump-diffusion X described by

Xt = X
(i)
t−Ti for Ti ≤ t < Ti+1, i ∈ {0, 1, . . .}. (2.3)

X is Markovian with generator A given by

Af(x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x) + λ(x)

∫
f(y)− f(x)dG(y)

= Ad(f) + λ(x)

∫
f(y)− f(x)dG(y) (2.4)

for f ∈ C2(R) where Ad denotes the usual generator for the diffusion.

Remark More generally the generator for a jump-diffusion A is for f ∈ C2(R) given
as

Af = Adf + λ(x)

∫
f(y)− f(x)dGx(y). (2.5)

Note that y is the target of the jump while Yi’s distribution is allowed to depend on
x, the position of the jump diffusion at the jump time.

2.2. Stationary distributions

When we are searching for stationary distributions it is important to note that the
jump-diffusions consist of three parts:

1. the distribution of the diffusions X(i),

2. the distribution of the jump targets Yi, and

3. the distribution of the underlying point process Ti.
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2.2. Stationary distributions

These have to be chosen in a way such that the resulting process turns stationary.
Certain mild conditions are required for a stationary distribution to exists. On

average, the first jump must take place in finite time and the average time between
jumps must be finite. The following theorem makes the statement precise.

Theorem 2.1. Consider a jump-diffusion with jump targets model where the first

diffusion is started according to Y1, that is X
(1)
0

D
= Y1. If µ = EG[T1] < ∞ then a

stationary distribution F0 exists. F0 satisfies the following relation∫
f(x)dF0(x) =

1

µ
EG

[∫ T1

0
f(Xs)ds

]
, f ∈ Cb(R) (2.6)

and the right-hand side of (2.6) defines a probability measure.

Proof. Recall that G is the distribution of Yi. The idea of the proof is to consider

R(t) := EG[f(Xt)] and show it converges to

∫
f(x)dF0(x) as t→∞

for a class of f ’s sufficiently large to determine the distribution of Xt. This is
done using the Key Renewal Theorem (Theorem 1.12) where after uniqueness and
existence are shown.

Splitting after whether the first jump occurs before or after t and using a renewal
argument (recall that FG is the distribution of the waiting times when the jump
targets have distribution G), one gets

R(t) = EG[f(Xt);T1 ≤ t] + EG[f(Xt);T1 > t]

=

∫ t

0
EG[f(Xt);T1 = s] dFG(s) + EG[f(X

(1)
t );T1 > t]︸ ︷︷ ︸

=:g(t)

= g(t) +

∫ t

0
R(t− s) dFG(s)

= g(t) + (F ∗R)(t), t > 0

to which the Key Renewal Theorem is applied. The distribution of T1, F , is non-
arithmetic as λ(x) > 0.

One needs to determine a set of f ’s such that g is directly Riemann-integrable
(DRI) and the following shows that f ∈ Cb(R) is such a set. Being Riemann inte-
grable on every compact set with

∫
|g|dt <∞ is equivalent to being DRI. Rewrite g

as

g(t) = EG

[
EG[f(X

(1)
t );T1 > t]

∣∣∣X(1)
]

= EG[f(X
(1)
t )] · P(T1 > t|X(1))

= EG[f(X
(1)
t )] · exp

(
−
∫ t

0
λ(X(1)

s ) ds

)
from which it follows that if f(x) is continuous then so is g(t). Let furthermore f
be bounded by say K then

|g(t)| ≤ EG[|f(Xt)|;T1 > t] ≤ K EG[1;T1 > t] ≤ K,

that is, g is bounded by K as well. Thus g is a continuous and bounded function
and such functions are Riemann integrable on every compact set. That

∫
|g| dt <∞

follows from f being bounded since∫ ∞
0
|g| dt ≤

∫ ∞
0

EG[|f(Xt)|;T1 > t] dt = EG

[∫ T1

0
|f(Xt)| dt

]
≤ K EG[T1] <∞.
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2. Jump-diffusion models using jump targets

Hence the Key Renewal Theorem can be applied to such f ’s. In addition, for these
f ’s the interchange of the order of integration in the following calculation is justified.

As µ <∞ the Key Renewal Theorem is applied to find the limit

lim
t→∞

R(t) =
1

µ

∫ ∞
0

g(s)ds =
1

µ

∫ ∞
0

EG[f(Xs);T1 > s]ds

=
1

µ

∫ ∞
0

∫
T−1
1 (s,∞)

f(Xs(ω))P (dω)ds =
1

µ

∫
Ω

∫ T1

0
f(Xs(ω)) dsP (dω)

=
1

µ
EG

[∫ T1

0
f(Xs)ds

]
Denote the right-hand side by Λ(f) and note that it does not depend on the starting
position x0 of the jump-diffusion. While the limit only holds for certain f , Λ(f) is
well-defined for any measurable f . Λ(1R) = 1 and for A1, A2, . . . pairwise disjoint
Λ(
∑

1Ai) =
∑

Λ(1Ai) by dominated convergence and thus Λ defines a genuine
probability.

Thus it has been shown that Λ defines a probability and that R(t) converges
to this for sufficiently many f in order to determine limt→∞R(t) uniquely.

To argue that a stationary distribution is determined uniquely by this has two
parts. First it must be checked if it actually defines a probability measure and
secondly that it is actually stationary.

Let νtG denote the probability measure of Xt at time t when X0
D
= Yi then∫

f(x)dνtG(x) = EG[f(Xt)] = R(t)→
∫
f(x)dF0(x) for t→∞

for f ∈ Cb(R). This per definition implies νtG
w−→ F0. What remains is to show that

F0 is a stationary distribution and that it is the only one.
That it is the stationary distribution follows from

F0(f) = lim
t→∞

νt+sG (f) = lim
t→∞

∫
νsy(f)dνtG(y), s > 0

which holds because vsy(f) ∈ Cb(R) for the diffusions considered here. Hence

F0(f) =

∫
νsy(f)dF0(y) = νsF0

(f)

for s > 0 and f ∈ Cb(R).
The uniqueness of the stationary distribution relies on the fact that the under-

lying diffusion is regular, that is attains all values throughout the interval it lives
on. No formal proof is offered though.

Theorem 2.1 is an existence/uniqueness theorem in the most classical sense: It
offers neither a construction nor much explicitness, but it is soothing to know that
the objects we are looking for actually exists. Further, if we are able to derive the
stationary distribution in more than one way we know they must be the same.

Further note that one assumed µ <∞ such that jumps are guaranteed to occur
in “reasonable” time. While this is trivially true for a Poisson process it is not
necessarily so for arbitrary λ(x). We could imagine a diffusion twist around a level
for which the intensity is minute implying that no jumps occur or at very least that
µ =∞. A non-constant intensity, as we shall see, complicates matters considerably.
Nevertheless, if it is bounded below Theorem 2.1 immediately gives:
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2.3. Description of stationary density via renewal theory

Corollary 2.2. Consider a jump-diffusion with jump targets attaining values in
]l, r[ and intensity λ(x). If

λ(x) > λ0 > 0 for all x ∈]l, r[

then a stationary distribution exists.

Proof. If one can show that µ = EG[T1] < ∞ then Theorem 2.1 gives the desired.
By assumption it follows that

EG[T1] =

∫ ∞
0
PG(T1 > t|X(1))dt =

∫ ∞
0

exp

(
−
∫ t

0
λ(X(1)

s )ds

)
dt

<

∫ ∞
0

exp(−λ0t)dt =
1

λ0
.

The intuition of the above corollary is that the intensity being bounded below
by a constant λ0 implies that regardless the behavior of X the jumps are always
more likely to occur than for a Poisson process with intensity λ0.

What follows is a collection of specific setups for which the stationary distribu-
tion can be determined explicitly.

2.3. Description of stationary density via renewal theory

In the preceding section we proved that a unique stationary distribution exists under
very general conditions. While the proof was based on the Key Renewal Theorem,
renewal theory can also be used to find an explicit expression for the density.

Consider a stationary renewal process which exists provided µ < ∞. Recall
that, at time t the distribution of the current life time δt equals that of the current
life time at any other time, say s. The same holds for the excess life time γt and it

even holds that δt
D
= γt, t > 0.

For the jump-diffusion with a stationary point process this implies that at time
t the current life of the diffusion has the same distribution as at any other time
point.

Two probabilistic replica of the diffusion with boundary condition given by Yi
have the same distribution for any specific t. At time t, the jump-diffusion’s diffusion
part has been alive for δt, which has a stationary distribution with density fρ. Thus

the stationary distribution for the jump-diffusion must be that of X
(i)
δt

. If densities
exist for the transition probabilities the stationary density u for the jump-diffusion
is given by

u(x) =

∫
dG(y)

∫
dt pt(x, y)fρ(t). (2.7)

Note that this line of reasoning does not depend on X(i)’s being diffusions, but
merely that they have a transition probability. On the other hand this approach
shows that the stationary distribution for jump-diffusion requires the underlying
point process to be stationary and as, by Theorem 2.1, the stationary distribution
is unique we formulate the following corollary.

Corollary 2.3. For any jump-diffusion with independent jump targets governed
by a stationary distribution the underlying point process must follow its stationary
distribution.
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2. Jump-diffusion models using jump targets

2.4. Brownian motion returning to 0

Consider the special case of g ≡ ε0, that is at every jump we return to 0. Further,
the diffusion considered is the Brownian motion and the jump-intensity is constant
λ(x) ≡ λ > 0 such that the jump process becomes a Poisson process. We begin
the analysis by considering a standard Brownian motion and then generalize to an
arbitrary Brownian motion.

We show two ways of getting the stationary distribution in this setup. The
first approach is inspired by renewal theory and uses (2.7). In the case of a Poisson
process this becomes particularly simple with fρ(t) = λ exp(−λt), that is the Poisson
distribution itself. The second approach uses the infinitesimal generator to derive a
differential equation which any stationary distribution must solve.

The results of this section are summarized in Theorem 2.4.

2.4.1. Standard Brownian motion

Recall from (1.37) that the transition probability for a standard Brownian motion
is given by

pt(0, x) =
1√
2πt

exp

(
−x

2

2t

)
.

We quest the stationary distribution, its density denoted by u, and relation (2.7)
yields

u(x) =

∫ ∞
0
pt(0, x)fρ(t) dt =

λ√
2π

∫ ∞
0

1√
t

exp

(
−x

2

2

1

t
− λt

)
dt, x ∈ R. (2.8)

We shall need the first derivative of u, well-defined on R \ {0}

u′(x) =
−xλ√

2π

∫ ∞
0

1

t3/2
exp

(
−x

2

2

1

t
− λt

)
dt, x 6= 0 (2.9)

found by differentiating under the integral. Note that u is not differentiable in 0
as the derivative from the left at 0 approaches −

√
2λ while the derivative from the

right approaches
√

2λ. Surprisingly, we can rewrite u′ from (2.9) in a clever way as

u′(x) =

{
−λe−

√
2λx, x > 0,

λe
√

2λx, x < 0,
(2.10)

proven below and hence we see that

u(x) =

{√
2λ
2 e−

√
2λx, x > 0

√
2λ
2 e
√

2λx, x < 0.

We wish for u to be continuous and choose

u(x) =

√
2λ

2
e−
√

2λ|x|, x ∈ R. (2.11)

To prove (2.10), we quote [KT75] p. 363 stating that for x < 0 and ξ ≥ 0

1(0,∞)(t)
−x√
2πt3

exp

(
−ξx− 1

2
ξ2t− x2

2t

)
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2.4. Brownian motion returning to 0

is a probability density. In particular it integrates to 1 and by rearranging and
substituting ξ =

√
2λ > 0 we obtain

e
√

2λx =
−x√
2π

∫ ∞
0

1

t3/2
exp

(
−λt− x2

2t

)
dt, x < 0,

proving (2.10) for x < 0. In the case x > 0 the identity holds for −x < 0 and thus
simply substitute x with −x to obtain the desired. In particular using (2.8) and
(2.11), we have along the way proved the useful identity∫ ∞

0

1√
2πt

exp

(
−x2 1

2t
− λt

)
dt =

1√
2λ
e−
√

2λ|x|, x ∈ R \ {0}, λ > 0. (2.12)

Another way of finding the stationary distribution is to use the infinitesimal
generator A from (2.4) here becoming

Af(x) =
1

2
f ′′(x) + λ(f(0)− f(x)), f ∈ C2

0 (R). (2.13)

We are interested in finding an initial stationary distribution ν for X and such ν
must satisfy

ν(Af) = 0 (2.14)

for f ∈ L(ν). As C2
0 (R) is dense in L(ν) it is a determining class and thus any

probability is uniquely determined from the behavior with respect to such f ’s. In the
following we assume that ν has continuous density u with respect to the Lebesgue-
measure. One finds

ν(Af) =

∫ [
1

2
f ′′(x) + λ(f(0)− f(x))

]
u(x) dx =

∫ [
1

2
f ′′ − λf

]
u dx+ λf(0).

(2.15)
As we have done earlier using the space of test functions integration by parts is
applied to move the derivatives from f to u and as this only has to be done twice
it suffices for f to be C2

0 . While these considerations at first seem innocent a subtle
point has been omitted. We have to require that u′ and u′′ exist at least on a set with
probability 1. This assumption is not of pathological nature as should we succeed
in our endeavor of finding the same u as in (2.11) then indeed u is not differentiable
in 0. Nevertheless, u′(0−) and u′(0+) are both well-defined.1

Using ordinary analysis, care has to be taken at x = 0 and thus the integral is
split around 0. We first consider∫ ∞

0+
f ′′u dx = [f ′u]∞0+ −

∫ ∞
0+

f ′u′ dx = −f ′(0)u(0+)−
∫ ∞

0+
f ′u′ dx

= −f ′(0)u(0+) + f(0)u′(0+) +

∫ ∞
0+

fu′′ dx.

Analogously, we find∫ 0−

−∞
f ′′u dx =

∫ 0−

−∞
fu′′ dt+ f ′(0)u(0−)− f(0)u′(0−).

1Strictly speaking for an element u in L(ν) it is also meaningless to talk about u(0), but as we
require u to be continuous this uniquely identifies a member of the equivalence class.
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2. Jump-diffusion models using jump targets

Inserting these expressions into (2.15), we get the intermediate result for f ∈ C2
0 (R)

ν(Af) =

∫ ∞
0+

(u′′/2− λu)f dt− f ′(0)u(0+)/2 + f(0)u′(0+)/2

+

∫ 0−

−∞
(u′′/2− λu)f dt+ f ′(0)u(0−)/2− f(0)u′(0−)/2 + λf(0) = 0.

(2.16)

Restricting our attention to f ’s with support on [0,∞) it is seen that u must satisfy
u′′− 2λu ≡ 0 on (0,∞) as such f ’s are dense in C2(0,∞). Analogously on (−∞, 0).
Thus

u(x) =

{
A1e

√
2λx +B1e

−
√

2λx, x < 0,

A2e
√

2λx +B2e
−
√

2λx, x > 0.
(2.17)

As u defines a finite measure on R it follows that B1 = A2 = 0. In order to
determine A1 and B2 we insert the values for u into (2.16) and remember that with
this particular u the integral of both integrand equals 0. Therefore

−f ′(0)B2 − f(0)B2

√
2λ+ f ′(0)A1 − f(0)A1

√
2λ+ 2λf(0) = 0.

Choosing f such that f(0) = 0 this yields A1 = B2, while an f such that f ′(0) = 0
yields

−f(0)B2

√
2λ− f(0)A1

√
2λ+ 2λf(0) = 0.

Summing up A1 = B2 =
√

2λ/2 such that

u(x) =

√
2λ

2
e−
√

2λ|x|, x ∈ R.

This could also be found using (2.17) directly, that u is continuous to give A1 = B2

and finally that u has to integrate to 1.

Checking the solution To check if the solution actually fulfills the differential equa-
tion and the boundary condition one might be tempted—since u is continuous—to
check that∫

R

(1/2u′′ − λu)fdx =

∫
R\{0}

(1/2u′′ − λu)fdx = −λf(0), f ∈ C2(R). (2.18)

Alas, the second integral in the above equals 0! This is hardly surprising as u on
(−∞, 0) and (0,∞), respectively, was chosen to be a function for which 1/2u′′−λu ≡
0 and thus the integrand is zero. So where is the flaw in our argument? While u
is continuous u′′ is not. In fact, it is not even a function, but rather a distribution
with atoms in 0 and thus {0} is not a null-set for the integrand.2

We wish to find ∂2u in a distributional sense, see Section A.1. First, we find
∂u and as u is continuous and piecewise differentiable on (−∞, 0) and (0,∞) its
derivative in distribution sense ∂u ∈ L1(R) is given by

∂u(x) =

(√
2λ

2
e−
√

2λ|x|

)′
=

{
λe
√

2λx on (−∞, 0)

−λe−
√

2λx on (0,∞)
= sgn(x)(−λ)e−

√
2λ|x|.

2The measure-theoretic statement is that u′′ does not have a density with respect to the Lebesgue
measure and thus it is not automatic that {0} is a null-set.
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2.4. Brownian motion returning to 0

Albeit exotic at first glance it fits our expectations and the regular chain rule as
∂|x| = sgn(x). Nevertheless, it is still a distribution function with no atoms, but
things turn a bit more involved when we wish to find ∂2u and we need to invoke a
bit more of distribution theory. Let ϕ ∈ C∞0 (R) be a test function. As the inner
product operator (A.1) is linear, we can rest-assured omit the constant factor −λ
from our calculations at first and using (A.2) it is seen that〈

∂ sgn(x)e−
√

2λ|x|, ϕ
〉

= −
〈

sgn(x)e−
√

2λ|x|, ∂ϕ
〉

=

∫ 0

−∞
e
√

2λxϕ′ dx−
∫ ∞

0
e−
√

2λxϕ′ dx

= [e
√

2λxϕ]0−∞ −
∫ 0

−∞

√
2λe
√

2λxϕdx− [e−
√

2λxϕ]∞0 −
∫ ∞

0

√
2λe−

√
2λxϕdx

= ϕ(0)−
〈

1(−∞,0)(x)
√

2λe
√

2λx, ϕ
〉

+ ϕ(0)−
〈

1(0,∞)(x)
√

2λe−
√

2λx, ϕ
〉

=
〈

2δ0 −
√

2λe−
√

2λ|x|, ϕ
〉
,

Having omitted a factor −λ it follows that in a distributional sense

∂2u(x) = −2λδ0 + λ
√

2λe−
√

2λ|x|

with δ0 the Dirac delta-distribution. Success is close and we see

1/2∂2u(x)− λu(x) = −λδ0

thus satisfying
∫
−λδ0f(x) dx = λf(0) as desired.

2.4.2. General Brownian motion

Keeping degenerate Yi’s, we can treat the case of a general Brownian motion X
(i)
t

with drift θ and variance σ2 in the following theorem.

Theorem 2.4. Consider the jump-diffusion with jump targets model where Yi ≡ ε0,
the jumps are Poisson with intensity λ, and where the diffusion parts X(i) are general
Brownian with drift θ and variance σ2 for all i ∈ {1, 2 . . .}. A stationary initial
distribution exists and has density

u(x) =
λ√

θ2 + 2σ2λ
exp

(
−
√
θ2 + 2σ2λ|x| − θx

σ2

)
. (2.19)

In particular for a standard Brownian motion it is the Laplace distribution with
density

u(x) =

√
2λ

2
exp

(
−
√

2λ|x|
)
. (2.20)

Proof. The density of a general Brownian motion at time t is given by

pt(0, x) =
1√

2πσ2t
exp

(
−(x− θt)2

2σ2t

)
.

Since the jumps are Poisson with intensity λ the stationary renewal process distri-
bution is fρ(t) = λ exp(−λt) for t > 0. Using (2.7) it is seen that

u(x) =

∫ ∞
0
dt fρ(t)pt(0, x) =

λ

σ
√

2π

∫ ∞
0

1√
t

exp

(
−(x− θt)2

2σ2t
− λt

)
dt.
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2. Jump-diffusion models using jump targets

Rewriting this and using (2.12) gives

u(x) =
λexp( θx

σ2 )

σ

∫ ∞
0

1√
2πt

exp

(
−
(x
σ

)2 1

2t
−
(
θ2

2σ2
+ λ

)
t

)
dt

=
λexp( θx

σ2 )

σ
· 1√

θ2/σ2 + 2λ
e−
√
θ2/σ2+2λ | x

σ
|

=
λ√

θ2 + 2σ2λ
exp

(
−
√
θ2 + 2σ2λ|x| − θx

σ2

)
, x ∈ R \ {0}

since σ > 0.

2.5. Brownian motion with arbitrary jump distribution

Maintaining jumps from a Poisson process, this section allows for more general
distributions of the Yi’s with density g. As before we begin by considering a standard
Brownian motion treated in Theorem 2.5 while the stationary density for the general
Brownian motion is found in Theorem 2.6.

2.5.1. Standard Brownian motion

We begin by proving a result very similar to Theorem 2.4.

Theorem 2.5. Consider the jump-diffusion with jump targets model where Yi has
density g for all i ∈ {0, 1, . . .}, the jumps are Poisson with intensity λ, and where
the diffusion parts are standard Brownian. A stationary initial distribution exists
and has density

u(x) =

(
g ∗
√

2λ

2
exp

(
−
√

2λ|z|
))

(x). (2.21)

Proof. The strategy is to use the condition on the infinitesimal generator to obtain
a differential equation, which is then solved by Fourier transformation.

Since f has compact support the derivatives can be moved freely between f
and u merely adjusting the sign appropriately. Using this combined with the fact
that g and u both integrate to 1, one finds

ν(Af) = 1/2

∫
f ′′udx+ λ

∫ ∫
(f(y)− f(x))g(y)u(x)dydx

= 1/2

∫
fu′′dx+ λ

[∫
fgdy −

∫
fudx

]
= 1/2

∫
fu′′dx+ λ

∫
(g − u)fdx

=

∫
[u′′/2 + λ(g − u)]fdx

for f ∈ C2
0 (R). These calculations are valid only if u′ and u′′ are defined almost

everywhere as one is acting under the integral sign. Hence for the following the
analysis to be true the u considered must be C2 on a set of full measure and integrate
to 1.3 This is checked when a candidate for u has been identified.

3The calculations above have not assumed that u is a density. This is, of course, a requirement
stated in the boundary condition, but for the analysis to be true thus far it is not needed.
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2.5. Brownian motion with arbitrary jump distribution

Using the above expression and solving ν(Af) = 0 one obtains

u′′ − 2λu = −2λg with boundary condition u a density (2.22)

the Fourier transform of which becomes

−s2û(s)− 2λû(s) = −2λĝ(s)

and isolating û

û(s) =
√

2λĝ(s) ·
√

2λ

s2 + 2λ
.

By (A.10) and (A.11) this is the Fourier transform of

u(t) =
√

2λ
√
π/2

1√
2π

(
g ∗ e−

√
2λ|z|

)
(t) =

(
g ∗
√

2λ

2
e−
√

2λ|z|
)

(t), t ∈ R. (2.23)

To check the requirements for u recall that two probability densities convolved
again yields a probability density and as such u is indeed a probability density. It
remains to verify that u is twice differentiable. If g is a continuous density then
by the smoothing property of convolution u is smooth everywhere with the only
possible exception of x = 0. If g has atoms each of these leads to a singularity for u
as convolution is a linear operation and (εz0 ∗h)(x) = h(x− z0). Since g is a density
it can at most have countably many singularities, which carries over to u. Therefore
u is C2 on a set of full measure as required.

Note that this theorem does not by itself give any information about the behav-
ior of the point process producing the jumps. It is assumed to be Poisson and the
density for the resulting stationary distribution naturally depends on this choice, but
one cannot isolate the effects of the point process in the density. We have a priori
no chance of concluding anything about either the X(i)’s, the Yi’s or the Ti’s, but
only about their interplay and how this forms a stationary distribution. Therefore
Corollary 2.3 is useful.

As discussed in Section A.2 convolution is a smoothing operation and it is
tempting to conclude that as exp(|x|) is infinitely smooth everywhere except at
x = 0 the same must hold for u. Nevertheless, as we saw in the proof above this is
only true if g is a function whereas if g is a measure with atoms the argument fails.
For instance for g ≡ (ε−1 + ε1)/2 both −1 and 1 are singularities of u as illustrated
in Figure 2.1.

Figure 2.1.: Plot of u = 1/2[exp(−2|t−1|)+exp(−2|t+1|)] with two singularities at −1 and
1, respectively, being the resulting distribution for g ≡ (ε−1 + ε1)/2 with λ = 2.

Having done the work in the previous section it is easy to verify that u is a
solution to (2.22). With ϕ a test function〈
∂2u, ϕ

〉
=
〈(
g ∗ ∂2

√
2λ/2e

√
2λ|x|

)
(t), ϕ

〉
=
〈(
g ∗ (−2λδ0 + λ

√
2λe−

√
2λ|x|)

)
(t), ϕ

〉
.
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2. Jump-diffusion models using jump targets

Finally, recalling that the density of the sum of two independent random vari-
ables is the convolution of their densities, u of Theorem 2.5 is in fact the density
of Xt + Yi, where X is the Brownian motion being reset to 0 at every jump and
initialized with its stationary distribution, while Yi continues to denote the jumps.
The intuition behind this is that since X and Yi are independent any jump can be
seen as a two-step experiment where a point process gives the jump time while a
second independent experiment yielding the jump target Yi is undertaken.

Note that (2.21) with g ≡ ε0 reduces to (2.20) and as such one could easily
have used the Fourier transform technique from the proof of Theorem 2.5 to treat
the special case presented in Theorem 2.4.

2.5.2. General Brownian motion

The most general version of the theorems above for a general Brownian motion,
Poisson jumps, and arbitrary jump target distribution is contained in the following
theorem. The proof contains no surprises and is a straight-forward generalization of
the proof of Theorem 2.5. Since no additional insight is offered a sketch highlighting
the differences is presented.

Theorem 2.6. Consider the jump-diffusion with jump targets model where Yi has
density g for all i ∈ {0, 1, . . .}, the jumps are Poisson with intensity λ, and where
the diffusion parts are general Brownian with drift θ and variance σ. A stationary
initial distribution exists and has density

u ≡

(
g ∗ λ√

θ2 + 2σ2λ
exp

[
−
√
θ2 + 2σ2λ|x| − θx

σ2

])
. (2.24)

Proof sketch. The ODE to be solved is

σ2u′′ − 2θu′ − 2λu = −2λg

for which the Fourier transform becomes

û(s) = 2λĝ(s) · 1

s2σ2 + 2θis+ 2λ
.

Using (A.12) it is seen that

F

(
λ√

θ2 + 2σ2λ
exp

[
−
√
θ2 + 2σ2λ|x| − θx

σ2

])
(s) =

√
2

π
· λ

s2 + 2λ+ 2θis
.

Applying the convolution theorem for Fourier transforms (A.10) yields the desired.

2.6. Stationarity for general diffusion pieces and
non-constant jump intensity

So far the analysis has assumed constant jump-intensity and the Brownian motion,
but we shall now consider the situation for general λ(x) and general diffusions. Inte-
grals such as (2.7) are inaccessible with general λ(x). Instead obtaining a differential
equation for the stationary initial distribution from solving ν(Af) = 0 is the path
we choose to generalize.
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2.6. Stationarity for general diffusion pieces and non-constant jump intensity

So far these differential equations have been sufficiently simple to be solved, but
this is, unsurprisingly, not always the case. When λ(x) is non-constant the task is
further complicated as an integral factor is introduced into the equation turning it
into a integro-differential equation. We present the result in the following theorem.

Theorem 2.7 (Stationarity criterion). Consider a jump-diffusion with jump targets
model where Yi has density g for all i ∈ {0, 1, . . .}, the jumps have x-dependent
intensity λ(x), and where the diffusion parts are given by (2.1)

dX
(i)
t = b(X

(i)
t )dt+ σ(X

(i)
t )dBt, X

(i)
0 = Yi−1.

The stationary density u, if it exists, must satisfy

σ2(x)

2
u′′(x) +

[
(σ2)′(x)− b(x)

]
u′(x) +

[1

2
(σ2)′′(x)− b′(x)− λ(x)

]
u(x)

= −g(x)

∫
λ(y)u(y)dy

(2.25)

with boundary condition ’u a density.’

Remark By Theorem 2.1 u exists if µ = EG[T1] <∞.

Proof. Assume u exists. The necessary and sufficient condition ν(Af) = 0 from
(2.14) remains true and familiar calculations show that

ν(Af) =

∫
bf ′u+ σ2/2f ′′udx+

∫
λ(x)u(x)

∫
[f(y)− f(x)]g(y)dydx

=

∫
[−(bu)′ + (σ2/2u)′′]fdx+

∫
λudx

∫
fgdy −

∫
λufdx

=

∫ [
− (bu)′ + (σ2/2u)′′ − λu+ g

∫
λudy

]
fdx

for f ∈ C2
0 (R). Solving ν(Af) = 0 is thus equivalent to the following integro-

differential equation in u

−(bu)′(x) +
1

2
(σ2u)′′(x)− λ(x)u(x) + g(x)

∫
λ(y)u(y)dy = 0,

which reduces to (2.25) as desired.

Despite its monstrous appearance, (2.25) deserves a right of existence. If one
somehow can produce a candidate for a stationary distribution—by guess, divine
inspiration, et cetera—it is a very explicit condition to check. In particular for
constant jump intensities it is nearly mechanical to check.

The above gives a description of the stationary distribution using the generator
and the fact that ν(Af) = 0 is a sufficient and necessary criterion for ν to be
stationary. However, we began the chapter by using a renewal theory approach in
short using the transition probabilities of the Brownian motion are known. This
allowed us to find the density of BT1 where T1 is an exponential waiting time.
Generally this argument gives:

Theorem 2.8. Let the jump intensity be constant λ, the diffusion have transition
densities (pt(y, x))t, and the jump target Yi have density g for all i ∈ {0, 1, . . .}.
Then the stationary density u is given by

u ≡ g ∗
∫ ∞

0
dt λe−λtpt(0, x). (2.26)
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2. Jump-diffusion models using jump targets

Proof. If Yi ≡ ε0 it follows that

u ≡
∫ ∞

0
dt λe−λtpt(0, x).

Consider general Yi with density. As Yi is independent of the diffusion pieces as well
as the renewal process the resulting stationary distribution is simply the convolution
of the densities yielding (2.26).

The significance of Theorem 2.8 lies in the fact that for an arbitrary diffusion
W the density of WT1 where T1 ∼ exp(λ) and independent of W, that is∫ ∞

0
dt λe−λtpt(0, z),

is of general interest. The standard and general Brownian motion at exponential
stopping has already been treated in the above. For the GBM see (1.41) and for
the OU see (1.47), while there is no expression familiar to the author for the CIR-
process. The very (!) lengthy expressions of the exponential stopping density for
the GBM- and OU-processes explains why we have only considered the Brownian
motion.

2.7. Stationary diffusions

Some diffusions such as the Brownian motion do not themselves have a stationary
distribution, while others such as the Cox-Ingersoll-Ross process (CIR) under certain
conditions do, see Theorem 1.8. We describe the general idea before turning to the
specifics of the CIR. Let (Zt)t≥0 be a diffusion with a stationary initial distribution
νD. The idea to obtain a stationary distribution for the jump-diffusion is now very
simple: With Poisson jumps, using νD as the distribution of all the Yi’s, we would
expect that the jump-diffusion is again stationary with ν = νD.

First note that for this setup it in general holds that (2.25) reduces to

σ2(x)

2
u′′(x) +

[
(σ2)′(x)− b(x)

]
u′(x) +

[1

2
(σ2)′′(x)− b′(x)

]
u(x) = 0 (2.27)

Recall from Section 1.3.4.4 that the CIR process is given as the solution to the
SDE

dZt = a+ bZtdt+ σ
√
ZtdBt, Z0 = z0 > 0

and that a stationary distribution exists if and only if (see (1.50))

2a

σ2
≥ 1 and b < 0.

To simplify the computation, we put 2a = σ2 and b = −1 such that the stationary
density becomes exponential (see (1.51))

u(x) =
2

σ2
exp(−2/σ2x) =

1

a
exp(−x/a), a > 0.

The left-hand side of (2.27) becomes

exp(−x/a)
[σ2x

2

1

a3
− (σ2 − a− bx)

1

a2
− b

a

]
= exp(−x/a)

[ x
a2
− a+ x

a2
+

1

a

]
= 0

as desired.
This example motivates the following theorem generalizing the above result and

offering somewhat of a partial converse statement.
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2.7. Stationary diffusions

Theorem 2.9. Let the diffusion pieces be arbitrary X(i) for which a stationary
distributionνD exists.

Consider the jump-diffusion with jump targets model where Yi has distribution
νD and the jumps are Poisson. The stationary distribution for the jump-diffusion
exists and is νD.

Conversely, if the stationary distribution for the jump-diffusion ν exists and Yi
has distribution ν for all i ∈ {0, 1, . . .} then ν ≡ νD.

Proof. With Poisson with intensity λ the stationary distribution for the jump-
diffusion always exists. Recall from (2.4) that Af(x) = Adf(x)+λ

∫
f(y)−f(x) g(dy)

such that

ν(Af) =

∫
Afudx =

∫
Adfu dx+ λ

∫
(g − u)f dx, f ∈ C2(R). (2.28)

From Theorem 1.8 it follows that if u is the stationary density of the diffusion then∫
Adfu dx = 0. By choosing g ≡ u it follows that ν(Af) = 0 showing that u is the

stationary for the jump-diffusion too.
For the second part of the theorem rewrite (2.28) as∫

Adfu dx = ν(Af)− λ
∫

(g − u)f dx.

By assumption ν(Af) = 0 and g ≡ u for all f ∈ C2(R) implying Adfu ≡ 0 such that
u is the density of the stationary distribution for the diffusion by Theorem 1.8.

The above theorem requires that the jump intensity is constant and to round off
this section we discuss in a colloquial setting what happens when this is not the case.
A constant jump intensity means that the time spent in the state solely determines
the probability for the next jump to occur. On the other hand, letting the jump
intensity depend on the position of X—say larger x leads to larger intensities—
introduces some askewness in the stationary distribution for the jump-diffusion and
pulls it closer towards the distribution of Yi for such x leading to large intensities.

Metaphorically speaking, it is possible to discriminate certain regions of the
diffusion by attaching high intensities to these parts such that a jump is more likely to
occur and the time spent in that region thereby decreases. A constant intensity can
be thought of as non-discriminating and is much easier to grasp both intuitively as we
can rely on our extensive knowledge of standard diffusions as well as mathematically.

This description is a bit simplified and for instance it is very well conceivable
that regions with low intensities are only reached with a very small probability.
Think for instance of a target distribution resetting to 0 at every jump and where
the diffusion is a Brownian motion with a large positive drift. Attaching very high
intensity to the immediate region of a for instance using λ(x) = exp[(x− a)/b] for b
minute and positive, results in a very low probability to go beyond a. The stationary
probability being in a small neighborhood around 0 is small. Such an intensity can
be used to model a threshold a.

45



CHAPTER 3

Jump-diffusion models using jump sizes

This chapter builds a model of jump-diffusions closely resembling the model of Chap-
ter 2. The model developed here and referred to as a jump-diffusion with jump sizes
specifies at times of jumps the change in position rather than the post-jump target.

As it turns out, this poses quite a different challenge mathematically and to
the machinery employed to address this model. The main purpose of this chapter
continuous to be to investigate the stationary distribution of the jump-diffusion.
We begin by establishing a simple criterion for the existence of such where after we
analyze various models of interest. Unfortunately, explicitness is much harder to
obtain in this model.

3.1. The model and stationary distributions

With the setup and notation known from Chapter 2 except now letting the Yi’s
describe jump sizes rather than targets, we still assume the Yi’s to be iid with
distribution G and if a density exists g. We require that E[Yi] <∞ and Yi ≥ 0 a.s.,
both requirements not previously needed in the jump target model.

The jump-diffusion is denoted by X while X(i) are the diffusions-pieces and at
jump times T1, T2, . . ., we find

XTi = X
(i)
Ti

+ Yi.

Let the distribution of X
(1)
0 be H with density κ when it exists. If we can somehow

make sure that XT1 +Y1—the starting point for X(2)—has distribution H, too, then
the X(i)’s are mutual probabilistic replicas. Using the renewal approach X then
becomes a regenerative process for which a unique stationary distribution is known
to exist. If in addition XTi has distribution L, we get the following relation

H = (L ? G) (3.1)

There is one catch though: The argument relies on the fact that the process is being
renewed and thus we must assume that Eκ[T1] <∞.

In the search of such H let νn be the distribution of X
(n+1)
0 with n ≥ 0 and put

X(0) ≡ 0 such that
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3.1. The model and stationary distributions

• ν0: The distribution of Y1,

• νn, n ≥ 1: The distribution of X
(1)
T1

+ Y1 when X
(1)
0 has distribution νn−1.

where it is used that the X(i)’s are probabilistic replicas if the Yi’s are iid. Should
ν∞ := limn→∞ νn exist this qualifies as H. The densities of νn, when they exist, are
denoted vn and ν∞ then has density v∞. We get the following recurrence relation

νn+1(f) = Eνn [f(X
(1)
T1

+ Y1)] =

∫∫
Ex[f(X

(1)
T1

+ y)] dνn(x) dG(y), n ≥ 1 (3.2)

where the auxiliary notation of hf (x, y) is introduced

hf (x, y) := Ex[f(X
(1)
T1

+ y)]

= Ex

[∫ ∞
0
dt λ(X

(1)
t )e−

∫ t
0 λ(X

(1)
s )dsf(X

(1)
t + y)

]
.

(3.3)

Recall that Evn [X
(1)
t ] denotes the expectation of X

(1)
t when started according to νn.

Both the notion of hf (x, y) and Ex[f(X
(1)
T1

+ y)] are used throughout.
The following definition combined with a simple result turns out to be useful

when tackling the problem of ν∞’s existence.

Definition 3.1 (Stochastic ordering). Let η1 and η2 be two measures on (R,B).
We say that η2 dominates η1 stochastically if

ν1([x,∞]) ≤ ν2([x,∞]) for all x ∈ R (3.4)

and write η1 � η2. If W1 and W2 are stochastic variables with distribution η1 and
η2, we write W1 �W2.

Formula (3.4) is equivalent to

η1(f) = E[f(W1)] ≤ E[f(W2)] = η2(f) (3.5)

for f bounded and non-decreasing if W1 �W2.

We merely quote the result that if ν1 � ν2 � . . . then a weak limit ν∞ :=
limn→∞ νn on (−∞,∞] exists. Note that we cannot be sure that ν∞ stays away
from ∞. This is certainly not the case in general as seen by considering νn := εn.

Relaying renewal theory and the preceding analysis we formulate the following
existence theorem for the jump size model. The idea is to realize how certain jump
size models can be reformulated as a sort of jump target models.

Theorem 3.1. Consider the jump-diffusion model with jump sizes. Let the limit
distribution ν∞ := limn→∞ νn exists, be a probability on (R,B),

µ = Eν∞ [T1] <∞, (3.6)

and all X
(i)
0
D
= Yi. Then X has a unique stationary distribution.

Proof. Theorem 2.1 gives sufficient conditions for the existence of a stationary dis-
tribution exists in a jump target model. It is to be shown how a jump size model
under the above assumptions can be reformulated such that Theorem 2.1 can be
applied.

By assumption ν∞ on R exists and can be used as the jump target distribution
G. Since all diffusion parts are started according to ν∞ and it is assumed E[T1] <∞,
Theorem 2.1 yields the existence of a stationary density for this particular jump size
model.
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3. Jump-diffusion models using jump sizes

It is critically important to note that ν∞ is not the stationary distribution itself.
Rather, it is simply the distribution with which all the X(i) must be started such
that X has a stationary distribution.

Also note that ν∞ depends on the jump intensity, but we usually suppress this
in the notation. However, when required we denote for λ(x) the resulting measure

ν
λ(x)
∞ .

3.2. Deterministic pieces

To get started we must make some simplifying assumptions. Unsurprisingly, it is a
lot simpler to consider jumps from a Poisson process, but to begin with we also use
deterministic pieces of the jump-“diffusion.“ These are denoted by ϕs(x), where x is
the starting point and s the time passing, see Section 1.5 in particular (1.61). Thus
X is a piecewise deterministic process.

With the X(i)’s deterministic, (3.3) becomes particular easy to handle as for
instance

Ex[f(X(1)
s ] = ϕx(s).

Thus if X(1) is started with distribution H and we assume κ exists it holds that

Eκ[f(X
(1)
T1

)] =

∫
κ(x)

∫ ∞
0
λe−λsf(ϕs(x)) ds dx

=

∫ ∞
0

λe−λs
∫
κ(ϕ−1

s (z))f(z)
1

|ϕ−1
s (z)′|

dz ds

(3.7)

if ϕs(x) is a diffeomorphism. η being the density of XT1 must satisfy Eκ[f(X
(1)
T1

)] =∫
f(z)η(z) dz and changing the order of integration in (3.7) gives

η(z) =

∫ ∞
0
λe−λs

1

|ϕ−1
s (z)′|

κ(ϕ−1
s (z)) ds.

So far we have only stated that the pieces are deterministic, but not their exact
behavior. The most simple example might well be the step process given by ϕs(x) =
x; does this have a chance of converging? Since all jumps are positive and ϕs(x)
does not decrease we eventually end up with ν∞ = ε∞ thus diverging. Instead
we need something that shoots towards 0 between jumps. We try our luck with
ϕs(x) = xe−αs with α, x > 0 and in this particular case find

η(z) =

∫ ∞
0
λe−(λ+α)sκ(zeαs) ds

which using the substitution w = zeαs can be written as

η(z) =
λ

α
zλ/α−1

∫ ∞
z
w−λ/ακ(w) dw. (3.8)

The latter form is preferred as it depends on λ and α solely through their ratio,
which is intuitively appealing.

It turns out that ϕs(x) = xe−αs is a prudent choice and it is kept throughout
this section, while other deterministic pieces are briefly considered at the end. So
far in our discussion we have left the jump distribution out of the pictures, but of
course this has to be specified in order to determine ν∞ (if it exists).

With Poisson jumps we move on to first consider degenerate jumps and the
moving on to general Yi ≥ 0’s a.s. with E[Yi] <∞.
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3.2. Deterministic pieces

3.2.1. Special case with degenerate jumps

Let Y1 have degenerate distribution εa for some a > 0. In this setup we first want
to show that νn converges for n → ∞ and then show that ν∞ has no mass at ∞.
The first is shown by means of induction whereas the latter is shown by proving
ν∞(id) <∞.

The induction start is to show that ν1 � ν2. This is easy to realize as ν1 = εa
and X

(1)
T1

= ϕ
(i)
T1

(x) = xe−αT1 > 0 implying that X
(1)
T1

+ Y1 is always greater than a.

Concerning the induction step assume νn−1 � νn. As a special case of (3.2), we
have

νn+1(f) = Eνn [f(X
(1)
T1

+ a)] =

∫
Ex[f(X

(1)
T1

+ a)] dνn(x), n ≥ 1 (3.9)

where hf (x, a) = Ex[f(X
(1)
T1

+ a)] =
∫∞

0 λe−λsf(xe−αs + a) ds. For any f non-
decreasing x 7→ hf (x, a) becomes non-decreasing as well and using νn−1 � νn it is
seen that∫

hf (x, a) dνn−1 = νn−1(hf (x, a)) ≤ νn(hf (x, a)) =

∫
hf (x, a) dνn

equivalent to

νn(f) ≤ νn+1(f)

which is again equivalent to νn � νn+1. As � is a transitive relation we have
therefore proved ν1 � ν2 � . . . implying that ν∞ exists.

We wish to investigate the behavior of ν∞ ≡ ε∞ at ∞. The strategy is to show
that the expectation of ν∞ is finite limit implying that ν∞({∞}) = 0. We thus want
to find conditions under which

ν∞(id) =

∫
x dν∞ <∞.

Using (3.9) with f ≡ id it follows that

νn+1(id) =

∫
a+ x

λ

α+ λ
dνn(x) = a+

λ

α+ λ
νn(id), n ≥ 1.

This describes a geometric series and inductively we find

νn(id) = a
n∑
i=0

(
λ

λ+ α

)i
(3.10)

being finite if and only if α > 0 in which case

ν∞(id) = a

(
1 +

λ

α

)
. (3.11)

It seems intuitive that the expectation value depends on the ratio λ/α. When in-
creased we get more jumps each adding a, which should lead to a higher expectation
value. That we must require α > 0 is soothing as otherwise the deterministic pieces
would increase over time pushing up towards ∞.
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3. Jump-diffusion models using jump sizes

X
(1)
T1

> 0 Yi ≥ 0

Induction start X –
Induction step – X

Table 3.1.: In the case were the X
(i)
T1

are deterministic and Y is general the table shows which
part of the induction needs which assumptions. Non-negativity of both are thus
needed for the induction to work.

3.2.2. General jump size distribution

Keeping deterministic X
(i)
T1

= xe−αT1 , we wish to treat general Yi rather than de-
generate. The ambition is still to show that ν∞ exists and has finite mean. In order
for the analysis to work some assumptions have to be made. These are noted along
the way and summarized in Table 3.1.

To show the monotone stochastic ordering we once more use induction. The
induction start is obvious as before as long as the deterministic pieces are positive.
The induction step is not much more difficult as it still holds that non-decreasing
f ’s lead to non-decreasing x 7→ hf (x, y)’s. For such a hf the induction assumption
implies ∫

hf (x, y)dνn−1(x) ≤
∫
hf (x, y)dνn(x) for all y.

Integrating on both sides with respect to the distribution of Y and using (3.2) yields
the transition probability and we get the desired inequality νn(f) ≤ νn+1(f) for any
non-decreasing f .

Note whereas the induction step holds for all y the induction start only holds
for y ≥ 0 and thus so does the result.

To compute the expectation value of νn+1 we must consider

hid(x, y) = y +
λ

λ+ α
x

from which it follows that

νn+1(id) =

∫ ∞
0

∫
y +

λ

λ+ α
xdνn(x) dG(y) = E[Y ] +

λ

λ+ α
νn(id).

This is again a geometric series converging if α > 0 implying that

ν∞(id) = E[Y ]

(
1 +

λ

α

)
if E[Y ] <∞.

We have now succeeded in finding κ = ν∞ when the pieces are deterministic such
that the renewal framework gives us a stationary process.

It is a bit surprising that there exists a stationary distribution even as α → 0,
where ϕx(s) = xe−αs resembles the step function more and more as α gets closer to
0.

3.2.3. Other deterministic pieces

Are there other possible choices of ϕs(x)? Besides the semigroup-requirement (1.62)
such that the PDP is Markovian, the induction start works only if ϕs(x) > 0 all the
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3.3. Diffusion pieces

way up to the first jump. The jumps being from a Poisson process can happen at
an arbitrary point of time with positive probability which implies

ϕs(x) > 0 for all s and t.

The induction step merely relies on—other than Y ≥ 0 a.s.—the fact that the
functions are monotone in x such that for x ≤ x′

ϕs(x) ≤ ϕs(x′) for all s.

Finally, in order to stay away from infinity

s 7→ ϕs(x) must be decreasing for s ∈ R

ϕs(x) = xebs− a
b (1− ebs) with a > 0 and b < 0 is the mean of CIR/OU but is not a

PDMP piece that is it does not fulfill (1.62).

3.3. Diffusion pieces

So far the setup considered has assumed Y ≥ 0 a.s. and the X(i)’s to be deterministic
and strictly positive. We maintain positive Y ’s, but try to generalize the above by
considering diffusion pieces not necessarily positive and want to investigate when a
stationary distribution for the jump-diffusion exists.

We first establish that ν∞ exists and the argument splits into two:

1. Show that ν1 � ν2 � . . ., and

2. that ν∞ has no mass at ∞, that is ν∞ is a measure on ]0,∞[.

Theorem 3.3 gives precise condition for when 1. holds and relies on Lemma 3.2.
Theorem 3.4 offers sufficient conditions for 2.

Lemma 3.2 (Domination Lemma). Let X and X̃ be diffusions on ]l, r[ such that

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0,

dX̃t = b(X̃t)dt+ σ(X̃t)dBt, X̃0 = x̃0,

and both Ex0 [Xt] and Ex0 [X̃t] exist for all t ≥ 0. If x0 < x̃0 then

Ptf(x) = Ex0 [f(Xt)] ≤ Ex̃0 [f(X̃t)] = Ptf(x̃), t ≥ 0 (3.12)

for f bounded and non-decreasing.

Proof. By assumption X̃0 > X0 from which it follows that

τ := inf{t ≥ 0 : Xt = X̃t} > 0

with the convention inf{∅} = ∞. On the set τ = ∞ (3.12) holds as f is non-
decreasing. What remains is to consider the set τ <∞.

Assume therefore τ <∞ and consider the τ -shifted X-process

Xτ+t = Xτ +

∫ τ+t

τ
b(Xτ+s) ds+

∫ τ+t

τ
σ(Xτ+s) dBs

= Xτ +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dB

∗
s

(3.13)
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3. Jump-diffusion models using jump sizes

where B∗s := Bτ+s−Bτ . The Brownian motion exhibits the strong Markov property
and hence B∗ = (B∗s )s≥0 is again a Brownian motion and the SDE (3.13) therefore

describes a diffusion. Similarly, the τ -shifted X̃ satisfies

X̃τ+t = X̃τ +

∫ t

0
b(X̃s) ds+

∫ t

0
σ(X̃s) dB

∗
s . (3.14)

Now for the core of the argument: Per definition of τ it holds that Xτ = X̃τ and
hence (3.13) and (3.14) describe the very same SDE and Theorem 1.7 implies that
(Xτ+t)t≥0 and (X̃τ+t)t≥0 are indistinguishable. In particular Xτ+t(ω) = X̃τ+t(ω)
for every ω and t ≥ 0 implying (3.12).

Important remark The lemma makes no assumptions on the nature of ]l, r[ and in
particular allows for diffusion attaining negative values! Since y ≥ 0 it furthermore

implies that x 7→ hf (x, y) = Ex[f(X
(1)
T1

+ Y1] is non-decreasing for any f non-

decreasing regardless of the diffusion X(1) as long as the expectation exists. We
state and proof:

Theorem 3.3. Let the X(i)’s be any (!) diffusion with a stationary distribution and
where E[Xt] exists for all t. Let the jumps be governed by a Poisson process with
intensity λ. Then ν∞ exists and is a measure on ]−∞,∞].

Proof. Throughout let f be a continuous and non-decreasing function while η is the
stationary distribution of the diffusion X(i).

Recall from (3.2) that

νn+1(f) =

∫∫
Ex[f(X

(1)
T1

+ y)] dνn(x) dG(y), n ≥ 1.

It is shown by induction that ν1 � ν2 � . . .. Put ν1 ≡ η. Stationarity then implies∫
Ex[ϕ(X(1)

s )] dν1(x) =

∫
ϕ(x) dν1(x)

for any ϕ continuous and bounded, where it should be noted that the s dependency
disappears. A Poisson process with intensity λ governs the jumps and hence for any
continuous and bounded ϕ it follows that

ν2(ϕ) =

∫∫∫ ∞
0

Ex[ϕ(X(1)
s + y)]λe−λs ds dν1(x) dG(y)

=

∫∫∫ ∞
0
ϕ(x+ y)λe−λs ds dνn(x) dG(y)

=

∫∫
ϕ(x+ y) dν1(x) dG(y)

Hence for f—since Y ≥ 0 a.s. and therefore f(x+ y) ≥ f(x) a.s.—it is seen that

ν2(f) ≥
∫∫

f(x) dν1(x) dG(y) = ν1(f)

equivalent to ν1 � ν2 and proving the induction start.
The induction step follows the lines of the deterministic case closely. Assume

νn−1 � νn. Lemma 3.2 gives that x 7→ hf (x, y) is a non-decreasing function and
hence

νn−1(hf (x, y)) ≤ νn(hf (x, y))
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3.3. Diffusion pieces

equivalent to

νn(f) ≤ νn+1(f)

as desired. Since the νn’s are monotonically increasing ν∞ exists as a probability on
]−∞,∞].

Consider our favorite diffusion process the standard Brownian motion, which
fulfills (3.12) of Lemma 3.2, but cannot be made stationary. It has mean 0 for any
t and thus ν1(id) = E[Y ]. The second piece of the jump-diffusion is then a standard
Brownian motion started at E[Y ] and thus ν2(id) = 2 E[Y ]. As Y ≥ 0 a.s. this
obviously implies that ν∞ = ε∞. This, so to speak, is a diffusion analog to the
deterministic step process.

We therefore need to come up with some diffusion that, phrased informally,
reverts down and away from ∞ with sufficiently high probability. Theorem 3.3
makes this statement precise: The diffusions considered must have a stationary
distribution.

Knowing that ν∞ exists we wish to investigate when it becomes a probability
on R (excluding ∞!). One class of diffusions for which this holds is characterized in
the following theorem.

Theorem 3.4. Let the X(i)’s be any stationary diffusion fulfilling the requirement
of Theorem 3.3. Let the jumps be Poisson with constant intensity λ > 0. Suppose
α(t) and β(t) exist such that

Ex[X
(i)
t ] = α(t)x+ β(t), |α(t)| < 1 for all t, and

∫
|β(t)| dt <∞. (3.15)

If in addition E[Y ] <∞ then ν∞ is a probability on (−∞,∞) with expectation

ν∞(id) =
E[Y ] +

∫∞
0 λe−λsβ(s) ds

1−
∫∞

0 λe−λsα(s) ds
. (3.16)

Proof. Theorem 3.3 gives that ν∞ and Ex[Xt] exists such that (3.15) is meaningful.
With Ex[Xt] having the required form of (3.15) one gets

Ex[X
(1)
T1

] =

∫ ∞
0
λe−λs Ex[X(1)

s ] ds

= x

∫ ∞
0
λe−λsα(s) ds︸ ︷︷ ︸

=:ᾱ

+

∫ ∞
0
λe−λsβ(s) ds︸ ︷︷ ︸

=:β̄

.

Thus Ex[X
(1)
T1

] = ᾱx+ β̄ with |ᾱ| < 1 and |β̄| <∞ and therefore

νn+1(id) =

∫ ∞
0

∫
Ex(X

(1)
T1

+ y) dνn(x) dG(y) = E[Y ] +

∫
Ex[X

(1)
T1

] dνn(x)

= E[Y ] + β̄ + ᾱ νn(id).

such that
(
νn(id)

)∞
0

is a finite geometric series with (3.16) as limit.
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3. Jump-diffusion models using jump sizes

Remark Theorem 3.4 can be expanded slightly. (3.15) states
∫
|β(t)|dt < ∞ but

can be relaxed to requiring that
∫
β(t)dt exists thus allowing for∫
β(t)dt =

{
−∞
∞

.

The quantity of interest is β̄ =
∫∞

0 λe−λtβ(t) dt which can now attain the values in
[−∞,∞]. |β̄| < ∞ was used in the proof and if this continuous to be the case the
conclusion of the theorem sticks: ν∞ is a probability measure on R with expectation
as in (3.16). If in contrast |β̄| =∞ (3.16) is still valid with ν∞(id) = β̄ and thus ν∞
is a probability on either [−∞,∞) or (−∞,∞] (concisely: on R ∪ {β̄}).

Albeit seemingly artificial assuming whatever is needed to make the technique
work, the x-affine structure of the expectation is a useful criterion. The standard
Brownian motion with α(t) ≡ 1 and β(t) ≡ 0 barely fails the requirements of the
theorem, but it holds for the Cox-Ingersoll-Ross and the Ornstein-Uhlenbeck process
as their expectation is given by (see (1.46))

Ex[Xt] = xebt − a

b
(1− ebt).

The geometric Brownian motion has expectation (see (1.40))

Ex[Xt] = xert

and thus also satisfies the theorem. Remember though, that there are certain con-
straints on the parameters in for the CIR and GBM to have a stationary distribution,
see Section 1.3.4.

3.4. Negative jumps

Throughout we have assumed the jump sizes were non-negative, that is Y ≥ 0 a.s.,
but as the following simple observation shows this is not a very limiting assump-
tion when considering applications. Section 4.2 offers an example of a model with
negative jumps.

Observation 3.5. If X with values in ]l, r[ is a stationary process and S :]l, r[→ R

is a strictly monotone map then S(X) is stationary as well.

Naturally, this observation applies to any kind of stationary process be it a
diffusion or jump size/target jump-diffusion. It is particularly useful in the jump
size setting as the model of stationary jump-diffusions with negative jumps are easily
produced.

In order to get a model with negative jumps all that needs to be done is pro-
ducing a stationary X and then use a S that is monotonically decreasing. Then any
positive jump for X results in a negative jump for S(X).

3.5. Discussion of results

Albeit having some extent of success in establishing quite a few results about when
a stationary distribution exists in the jump size models, it has not been possible to
identify an explicit stationary density.
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3.5. Discussion of results

In Chapter 2 we were able to derive an expression for the density in some cases
when the intensity was constant, while we for non-constant intensities could provide
a criterion a stationary density had to fulfill.

In the setting of this chapter we still know that a stationary density exists when
the jumps stem from a Poisson process, but so far we have not been able to find its
density. This is even though the analysis of the jump size model has been linked to
a jump target model with target distribution ν∞.

The key in Chapter 2 to do so was knowing the target distribution. When
instead specifying the jump sizes its equivalent becomes νλ∞ which—unlike in the
jump target model—depends on the jump-intensity λ(x)! Disregarding the fact that
finding νλ∞ has not even in the most simple of settings been possible, this alone
complicates matters enormously. For instance this makes an explicit form like (2.7)
unattainable.

In the jump target model the jump target distribution was given beforehand
and independent of all other quantities involved; as nice as it gets. On the other
hand in the jump size setting ν∞ depends complete on all three entities of the model:
the diffusion pieces X(i), the jump-intensity λ(x), and the jump size distribution.

and since, as we shall see, it is very difficult to determine ν∞. This means that
while an explicit expression for the stationary density we are not able to derive it.
So far all we have been able to say about ν∞ is that it is a genuine probability on
(−∞,∞).

The distribution of ν∞ is the heart of the jump size model and also abso-
lutely essential when we for x-dependent intensity λ(x) we wish to establish that
the existence of a stationary distribution, that is the first jump exists with positive
probability. In order for the jump size model to become truly useful more time and
energy would have to be spend on methods of determining ν∞.

While it has not been possible to derive an expression for v∞ the density of ν∞
the chapter nevertheless contains some tools that can be used to numerically find
the density and possible even a closed expression.

We present the idea in a simplified context. Consider the deterministic case
ϕs(x) = xe−αs with α > 0, or equivalently the GBM, with degenerate jumps of size
a. From Section 3.2 we know that if X(1) is started with density κ then the density

η for XT1 is given by (3.8). Hence the density of X
(1)
T1

would be

η(z) =
λ

α
zλ/α−1

∫ ∞
z

w−λ/ακ(w) dw,

with the density of X
(1)
T1

+ Y being

v1 = η(z − a).

This can be used to recursively determine v∞ by putting κ = v1 to obtain an
expression for v2 and then iterate.

The link between vn+1 and vn for n ≥ 1 in the general case when Y has density
g becomes

vn+1 ≡
(
g ∗ λ

α
yλ/α−1

∫ ∞
y

w−λ/αvn(w) dw

)
. (3.17)

In Chapter 2 the infinitesimal generator was used to find a integro-differential
equation for the stationary density with great success. Considering the above diffi-
culties and the devilish interconnection of ν∞ with X(i), λ(x), and Y , it would not
surprise us if the analysis breaks down.
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3. Jump-diffusion models using jump sizes

This is in fact the case and with the generator (2.5) in this model being

Af(x) =
σ2(x)

2
f ′′(x) + b(x)f ′(x) + λ(x)

∫
f(x+ y)− f(x)v∞(y) dy

= Adf(x) + λ(x)

∫
f(x+ y)v∞(y) dy − λ(x)f(x).

as the process jumps from x to x+ y. Even when keeping jump intensities constant
λ(x) ≡ λ, we head into trouble and with u being the density of ν find

ν(Af) =

∫
Adfu dx+ λ

∫ (∫
f(x+ y)v∞(y) dy

)
u(x)− f(x)u(x) dx

=

∫
Adfu− λfu dx+ λ

∫∫
f(x+ y)v∞(y)u(x) dy dx

for f ∈ C2
0 (R). Even when pretending v∞ to be known this seems unlikely to

be fruitful as it is simple not possible to separate f in the double integral in any
successful way.
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CHAPTER 4

Applications

This chapter presents applications of the theory developed in Chapters 2 and 3. As
is clear from the discussion in Section 1.3.4 it is very difficult to apply the jump
size model. Nevertheless a model is formulated to give the reader a taste of what
phenomena might be modeled using jump sizes.

Both models exhibit non-constant jump intensity and even in the case of the
target model this leads to equations not solvable without the numerical analysis.
The application of the target model is described in detail and the numerical analysis
is initiated; a full analysis is too complex to fit within the span of this thesis.

The models were suggested by Susanne Ditlevsen.

4.1. Models using jump targets

We build a neuron model in which the membrane of the neuron holds a certain
electrical potential and can “fire,“ that is release, this potential as part of neuronal
activity. Such a model is called an integrate-and-fire neuronal model.

The potential is modeled as a continuous-time stochastic process here a jump-
diffusion. A threshold a > 0 is defined such that while the potential being less than
a the probability for a release (jump) is tiny but as soon as the potential passes a
the probability increases drastically approaching 1. An intensity modeling this kind
of behavior is

λ(x) = exp

(
x− a
b

)
, 0 < b� a. (4.1)

The smaller b is the more drastic is the change of the jump intensity around a from
tiny to huge. In the limit b→ 0 we would expect a pure threshold behavior.

The diffusion parts of the jump-diffusion is described by an OU-process , that
is the SDE

dX
(i)
t = −β(X

(i)
t − α)dt+ σdBt, β, σ > 0, α ∈ R.

The jump target distributions Yi’s and the boundary condition for the above SDE
must model the following behavior. When the neuron fires there might be a small
residual potential left or the potential might become slightly negative due to the
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4. Applications

surrounding neurons. To model this we let the Yi’s follow a normal distribution
with mean 0 and variance 0 < τ � a, that is

Yi
D
= N

(
0, τ2

)
To interpret the parameters it pays to recall (1.43) describing the stationary

distribution of the OU-process. It is a N
(
α, σ

2

2β

)
making α easy to interpret since

it simply is the level around which the OU-process hovers in the long term. β and σ
together determine the variance of the stationary distribution and a larger β ensures
that the process reaches the level of α more rapidly.

Having the model in place the first question to ask is whether a stationary
distribution exists or not. According to Theorem 2.1 we must check if

EG[T1] <∞.

The intensity considered here is non-constant, which complicates matters signifi-
cantly. Fortunately Corollary 2.2 is at our disposal and leaves a way out. We
replace λ(x) from (4.1) with

λ̃(x) := min

(
exp

(
x− a
b

)
, ε

)
, 0 < b� a (4.2)

for some very small ε > 0. As λ̃(x) is bounded below Corollary 2.2 immediately
gives that a stationary distribution exists.

This of courses changes the model we just so proudly build and what conse-
quences does this mangling with the intensity have? From a modeling point of view
it is rather insignificant as ε can be chosen however small, but admittedly λ̃ is al-
gebraically less attractive. This however is of little concern when first we set out to
find the stationary distribution as the only feasible way to do so is utilizing criterion
(2.25). To compare the two we first discuss (2.25) for λ(x).

In case of λ(x), (2.25) becomes

σ2

2
u′′(x) + β(x− α)u′(x) +

[
β − exp

(
x− a
b

)]
u(x)

= − 1√
2πτ2

exp

(
−x2

2τ2

)
·
∫

exp

(
y − a
b

)
u(y) dy

(4.3)

with boundary condition u a probability density. Obviously, this is by no means a
trivial problem to solve since at least two circumstances complicate matters. First of
all the functional equation involves an integral over the entire axis rather than from
say 0 to x in which case there might be hope to solve (4.3) using Laplace transforms,
see [Fe66] p. 441-445. Second of all the boundary condition is highly non-standard
as we do not know any specific values, but are simply told that u has to be a density.
This troubles us when attempting to find a solution both by algebraic and numerical
means.

Regardless of whether one takes the analytical or numerical approach it is fruit-
ful to formulate (4.3) as a two-step problem. Noting that the integral although
depending on u is a constant say K > 0, we can begin by considering

σ2

2
v′′K(x) + β(x− α)v′K(x) +

[
β − exp

(
x− a
b

)]
vK(x) = K · 1√

2πτ2
exp

(
−x2

2τ2

)
,
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4.1. Models using jump targets

which is a regular second order inhomogeneous ODE. Suppose we can somehow find
a family of solutions (vK)K∈R+ it must include the desired density u. A necessary
condition for this vK is to satisfy∫

exp

(
y − a
b

)
vK(y) dy = K

together with
∫
vK dy = 1 and vK ≥ 0.

Even this second order inhomogeneous ODE is not solvable algebraically1 and
we are thus forced into a numerical procedure. For such it is irrelevant if λ(x) or
λ̃(x) is used and hence the ODE to solve numerically becomes

σ2

2
v′′K(x) + β(x− α)v′K(x) +

[
β − λ̃(x)

]
vK(x) = −K · 1√

2πτ2
exp

(
−x2

2τ2

)
(4.4)

with the function we are looking for fulfilling∫
λ̃(y)vK(y) dy = K (4.5)

and
∫
vK dy = 1 and vK ≥ 0.

It has therefore been argued that both from a modeling perspective and when
solving the problem it is natural to use λ̃(x) rather than λ(x).

In order to find vK we, a priori, need two things: to iterate and a bit of luck! The
numerical procedures familiar to the author all require a starting point c at which
vK(c) and v′K(c) is specified. In this setting vK(c) = v′K(c) = 0 seems like a safe
bet for c sufficiently negative depending on the choice of parameters (c = −1000τ
should do). Fixing K at some arbitrary positive value such as 1 we can find a first
candidate: v1. This then needs to be normalized (hoping for v1(x) ≥ 0) returning ṽ1

and (4.5) now yields a new constant K ′. Thus we run the procedure again with K ′

in place of K and keep our fingers crossed that the density produced at some point
converges.

Figure 4.1.: Plot of ψ, a numerical solution to (4.4) with parameters a = 50, α = 50,
b = 0.1, β = 1, K = 1, σ = 2, and τ = 0.1. ψ is non-negative and integrates to
approximately 4.67.

Time being short the author was not able to write such a procedure, but at-
tempts were made producing a function ψ plotted in Figure 4.1. No iterations were
done and therefore ψ has not been shown to converge and note that ψ does not
integrate to 1. Despite this the plot is interesting since it fits with the intuition of
the model.

The threshold a = 50 with the tiny b = 0.1 is clearly seen in the plot: as soon
as the process comes above 50 a jump is triggered and the density rapidly falls to 0.

1At least not by methods familiar to the author at present.
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4. Applications

α = 50 ensures that jumps indeed occurs as the OU-process’ expectation is α = 50
and with β = 1 and σ = 2 it rather rapidly approaches α = 50 after being reset
to approximately 0. Following a jump the reset target is picked from a N (0, 0.1)-
distribution since τ = 0.1 and as it is seen that very little mass is on the negative
axis. In fact, at any point on the negative axis ψ is of order 10−3 or less.

Without rigorous experiments having been carried out, it should be remarked
that the numerical analysis seems a bit instable. Nevertheless it is the gut feeling
of the author from playing with the code and different parameter values that there
is hope for finding the stationary density numerically. The initial plot of ψ being so
intuitive supports this.

4.2. Models using jump sizes

As mentioned many times before the jump size models are close to hopeless at
this state. Finding the stationary distribution or even showing its existence is very
difficult and the non-constant jump intensity only adds to this frustration. This very
brief section outlines a jump size model, which unfortunately cannot be analyzed
to any extent and as such should rather be seen as inspiration and motivation for
further research.

Recall Observation 3.5 stating that if X with values in ]l, r[ is a stationary
process and S :]l, r[→ R is a strictly monotone map then S(X) is stationary as well.
Section 3.4 already mentioned how this might be used to obtain a jump-diffusion
with negative jumps and we formulate the following model.

The beta cell is found in the islets of Langerhans of the pancreas. It produces
the hormone insulin continuously used for regulating the blood sugar levels. The
release of insulin from a beta cell depends on the concentration of sugar in the blood
and happens discretely in quanta. As such it is natural to model it using a jump-
diffusion where the jump sizes are a decrease in insulin concentration with the beta
cell.

Denote by Zt the concentration of insulin in a beta cell at time t and as negative
jumps are called for we use a monotonically decreasing transformation S to model
Zt = S(Xt) where for example

dXt = −β(Xt − α)dt+ σXtdBt, αβ > 0,
2β

σ2
> −1,

and either

S(Xt) :=
1

Xt
or S(Xt) := exp(−cXt), c > 0.

Note that if α = 0 then Xt is a GBM. The jumps need to be positive and Y
D
= Γ(η, τ)

is chosen as jump-distribution. An intensity function should be chosen such that the
intensity is large when Z is large and small when Z is close to 0. A simple choice
would be

λ(x) :=
1

x

λ(x) = S(x), or any other function displaying the desired features.
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APPENDIX A

Distribution theory, convolutions and integral transformations

This appendix contains a brief description of tools important in this thesis. The
section on distribution theory is inspired by [Gr09]. Convolutions and integral trans-
forms have analytical as well as probabilistic interest and a combined approach is
taken here. Again, [Gr09] has provided inspiration, while [Fe66] has given fruitful
insight into the probability theory. Fourier and Laplace transforms are ubiquitous
in the literature and for instance described in [KT75].

A.1. Distribution theory

Some functions not differentiable in the ordinary sense can be assigned a meaningful
derivative in a distributional sense, see [Gr09]. We list the following definition and
results.

Definition A.1. A distribution on R is a continuous linear functional Λ on the
space of test functions C∞0 (R). The value of Λ for ϕ ∈ C∞0 (R) is denoted by

Λ(ϕ) or 〈Λ, ϕ〉 with 〈·, ·〉 : L1,loc(R)× C∞0 (R)→ R, (f, ϕ) 7→
∫
R

fϕdt. (A.1)

The derivative of a distribution is given by

(∂Λ)(ϕ) = 〈∂Λ, ϕ〉 =

∫
∂Λϕdt = [Λϕ]∞−∞ −

∫
Λ∂ϕdt = −〈Λ, ∂ϕ〉

and more generally
〈∂nΛ, ϕ〉 = (−1)n 〈Λ, ∂nϕ〉 . (A.2)

Note, that ∂n denotes derivatives in distributional sense, while dn

dxn is used for
regular differentiation.

Theorem A.1. If a function f has a nth derivative on R− and R+, respectively,
its derivative in a distributional sense is

v =

{
dn

dxn f on R−,
dn

dxn f on R+.
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A. Distribution theory, convolutions and integral transformations

Proof. See Lemma 3.6 in [Gr09] p. 34.

For example ∂|x| = sgnx (the sign function).

Theorem A.2. The space C∞0 (R) is dense in Lp(R) for p ∈ [1,∞).

Proof. See Theorem 2.15 part 3 in [Gr09] p. 22.

A.2. Convolutions

Two types of convolutions are treated here. One, denoted by ∗ is an operation
between two functions while the other denoted by ? is an operation between a con-
tinuous function and a probability distribution function (more generally a bounded
non-decreasing function).

Definition A.1. Let f, g ∈ C(R) : R → R be subject to certain integrability
constraints and define

(f ∗ g)(x) =

∫
R

f(y)g(x− y)dy. (A.3)

Let F be a distribution function and g continuous, again such that the following
integral is well-defined. Define

(g ? F )(x) =

∫
R

g(x− y)dF (y). (A.4)

If F has density f then (g ? F ) ≡ (g ∗ f). Notation: fn∗ and Fn? denotes the n-fold
convolution.

Despite their similarities, it is very useful to have developed the notion of
both convolutions when dealing with probability distributions; some with densi-
ties and some without. A myriad of choices for conditions on the involved func-
tions/distributions such that the integrals are well-defined exists. In applications
this is rarely a problem and one simply has to consider the specific uses.

Where ∗ is commutative and associative for all function for which it is defined,
the ?-operation is not. Unless g itself is a distribution function (F ?g) is meaningless.
On the other hand, if G and F both are distribution functions the ?-operation
is commutative and associative. In this case the ?-operation has a probabilistic
interpretation as

P (X + Y ≤ x) = (G ? F )(x)

where F and G are the distribution functions for X and Y . This interpretation of
course translates to the ∗-operation provided densities exist. We list the following
well-known properties:

• If G is a probability distribution function so is F ? G.

• If f and g are both probability densities so is f ∗ g.

• Let F/f and G/g represent two probability distributions with atoms a1, a2, . . .
and b1, b2, . . .. Then the atoms for the convolved distributions are exactly all
possible sums ai + bj , i, j ≥ 1. In particular if the distributions are continuous
so is the convolved.
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A.3. Fourier transform

From Fubini’s Theorem it follows that∫
R

(f ∗ g)(t)dt =

∫
R

fdt

∫
R

gdt. (A.5)

A particular special case of interest arises when f and g both have support on
R− or R+:

(f ∗ g)(t) =

∫ t

0
f(τ)g(t− τ)dτ if f, g ∈ supp (R+)

and

(f ∗ g)(t) =

∫ 0

−t
f(τ)g(t− τ)dτ if f, g ∈ supp (R−) .

The convolved function behaves more nicely than the two original functions and
one habitually refers to convolution as a “smoothing operator.” For instance, the
convolved function is differentiable at a given point as many times as the two original
functions are together.

A.3. Fourier transform

A popular choice of integral transform is the Fourier transformation closely related
to the characteristic function of a real random variable. Denoted by either f̂ or F(f),
many popular choices for the definition of the (one-dimensional) Fourier transform
exist. This thesis uses

F (f) (s) = f̂(s) =
1√
2π

∫
e−istf(t)dt (A.6)

in which case the inverse becomes 1

f(t) =
1√
2π

∫
eistF (f) (s)ds. (A.7)

We shall need the following facts:

F (af(t) + bg(t)) (s) = af̂(s) + bĝ(s) (A.8)

F (∂nf) (s) = (is)nf̂ (A.9)

F (f ∗ g) (s) =
√

2πf̂(s)ĝ(s) (A.10)

and a brief table of Fourier transforms

F
(
e−a|t|

)
(s) =

√
2

π
· a

s2 + a2
, a > 0, (A.11)

F
(
e−a|t|−bt

)
(s) =

√
2

π
· a

s2 + a2 − b2 − 2bis
, a > b > 0 (A.12)

F (1) (s) =
√

2πδ0. (A.13)

All of the above except (A.12) are standard textbook references. For (A.12) we have

√
2π · F

(
e−a|t|−bt

)
(s) =

∫ 0

−∞
e(a−b)te−istdt+

∫ ∞
0

e−(a+b)te−istdt

1The inverse is seen to be proportional to the characteristic function.
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A. Distribution theory, convolutions and integral transformations

where both integrals converges simultaneously if and only if a > b > 0. When they
do

√
2π · F

(
e−a|t|−bt

)
(s) =

1

a− b− is
+

1

a+ b+ is
=

2a

[a− (b+ is)][a+ (b+ is)]

yielding (A.12).
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Brownian motion, 14
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