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Abstract

This thesis discusses a tabu search algorithm variant for solving the vehicle rout-
ing problem with time windows (VRPTW). First, basic theory of heuristics and
metaheuristics are introduced. Thereafter the original algorithm used to solve bin
packaging problems is discussed and adapted to the VRPTW setting.

The algorithm naturally focuses on the packaging dimension of the VRPTW and
tries to empty a specific vehicle in order to minimize the number of vehicles in a
solution. A key component of the algorithm is a so-called filling function trying
to identify vehicles from which all customers are easy removable. A tuning of the
filling function is performed and compared to the original filling function from the bin
packaging setting. The tuned version performs significantly better on the Solomon
benchmark problems, but is still far from the best-known solutions.

The adaption of the algorithm seems promising and suggestions for further re-
search and areas of interest are provided.
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Resume

Denne afhandling omhandler en variant af tabu-søgningsalgoritmer til at løse vehi-
cle routing problemer med tidsvinduer (VRPTW). Indledningsvist introduceres den
grundliggende teori bag heuristikker og meta-heuristikker. Derefter diskuteres den
oprindelige algoritme udviklet til at løse bin packaging problemer og denne tilpasses
VRPTW omstændighederne.

Naturligt nok fokuserer algoritmen p̊a paknings-dimensionen af VRPTW-pro-
blemet, og forsøger at tømme et udvalgt fartøj for derved at minimere antallet af
fartøjer i en løsning. En nøglekomponent i algoritmen er den s̊akaldte fylde-funktion,
der forsøger at identificere de fartøjer, hvor alle kunder let kan flyttes. En tuning
af denne fylde-funktion gennemføres og sammenlignes med den oprindelige fylde-
funktion fra pakningsproblemet. Den tunede fylde-funktion leverer signifikant bedre
resultater p̊aSolomons referenceproblemer, men er stadig langt fra de bedste kendte
løsninger.

Tilpasningen af algoritmen virker lovende, og der gives forslag til videre forskning
samt interesseomr̊ader.
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CHAPTER 1

Introduction

An infamous problem in operations research is the travelling salesman problem
(TSP) where a salesman wishes to visit a number of customers and return to his
or her home base traversing the shortest possible distance. The problem is simple
enough to present to a layman. But at the same time challenging enough to pose a
tough problem to the academic society.

The vehicle routing problem (VRP) has a fleet of vehicles located at a depot.
These vehicles have to visit a number of customers and return to the depot using
the fewest number of vehicles and/or travelling the shortest total distance. As such
it is a straight-forward generalization of the TSP and thus naturally attracts a lot of
academic interest. Due to its more abstract nature compared to the TSP, techniques
of more complex nature are needed in order to attack the problem.

Further, the VRP is very relevant to the business world. A vast amount of
businesses face the task of visiting customers to make a delivery, perform a service,
or what not. While the TSP is certainly relevant it is more often the case that
businesses have to attend to way more customers than what a single person/vehicle
can handle. Thus multiple “salesmen” are hired turning the problem into a VRP.

There are many adaptions and generalizations of the basic VRP and in what
follows we are concerned with the variant further constraining the capacity of the
vehicles, and imposing a time-window during which the visit has to be made. Such
a problem is called the (capacitated) vehicle routing problem with time windows
usually abbreviated VRPTW.

Whereas the TSP setting only has one natural objective, namely minimizing
the total distance traversed, the VRP has two natural objectives: One can try to
minimize the total distance travelled or the number of vehicles used. There can be—
and in realistic settings there usually is—a certain amount of correlation between
the two, but nevertheless it is important to realize that the two objectives are quite
different in nature. It is of course sensible, regardless of which objective is chosen, to
keep the other in mind as well. That is, for example, if two configurations uses the
same number of vehicles the one yielding the shorter total distance is to be preferred.
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1 Introduction

Academics aside, these thoughts translates nicely into business objectives. Busi-
nesses wishing to maximize profits are of course interested in minimizing costs given
a certain level of revenue. Costs split into fixed and variable costs, which can be
seen as the number of vehicles and the total distance travelled, respectively. Hav-
ing an additional vehicle in one’s fleet adds to the fixed costs: you need to acquire
the vehicle, buy insurance, hire a driver, and so on. The variable costs come from
fuel consumption and wear on the vehicle per distance travelled. Again, regardless
of which approach a business wishes to focus on, they are ultimately interested in
keeping overall costs as low as possible and would therefore, for example, prefer the
configuration with the smaller number of vehicles used given two configurations with
the same total distance travelled.

The business world has traditionally been more concerned with the minimization
of the number of vehicles used.

There might of course be further criteria to consider when solving a VRP-like
problem. As an example of such the delivering company UPS prefers right turns
over left turns.1 It often times shaves off some distance travelled, but even when
not time is saved. As one article explains:

And at stop lights, making a right turn at an intersection tends to be
faster than at a left turn, since you have only to wait for an opportunity
to turn in one lane of traffic. You also have the option of ”right on red” in
most jurisdictions, unless otherwise indicated by traffic signs. ”So even if
you didn’t save fuel, you’re going to move more quickly through a route.”

Other businesses specific challenges might pose other constraints providing an
interesting interplay between academia and business. What is important to a specific
business and how do we model this?

In this thesis the number of vehicles serves as primary objective. This decision
makes it possible to use algorithms developed for a different class of problems as is
explained in the following.

To attack the problem an algorithm originally developed for the bin-packaging
problem by Vigo et al. [2] is adapted to the VRPTW-setting. In bin-packaging
problem it is tried to pack a number of spatial objects into as few and small bins as
possible. Vigo et al.’s algorithm locates a target bin and then tries successively to
place its contents among the other bins thereby reducing the total number of bins
needed if the entire contents are relocated.

In light of this, the VRP and its cousins can be viewed as a reformulation of
a packing problem: Given a set of customers how can we “pack” these into some
vehicles? Each customer might have a unique “size” corresponding to a demand,
and a vehicle has a spatial limit corresponding to its capacity constraint. While the
analogy is straightforward there is one important difference. Whereas the packing
problem has boxes into which the objects are packed and these boxes are free to
move around this does not hold for the VRP. The physical location of the customers
is a given and cannot be manipulated. This is important when trying to relocate a
customer: Whereas a priori all bins are equally likely to absorb a new object not all
vehicles are likely candidates for visiting the particular customer.

1See the following articles: http://multichannelmerchant.com/opsandfulfillment/advisor/

fuel_conserve/ and http://abcnews.go.com/WNT/story?id=3005890\&page=1
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The details of the algorithm are explained in what follows and at this point
it suffices to remark that it incorporates the use of a tabu list to prevent cycling,
and a diversification procedure. The intensification process is a bi-product of the
search algorithm used. To assess the effectiveness of the algorithm the Solomon
instances [7] are used as benchmark, while a selected few are used for parameter
tuning. Performance is compared to the best known solution as well as solutions
found using an approach mimicking Vigo et al.’s. The latter is done to give a feeling
of the success of adopting the algorithm the VRPTW-problem.

In contrast to the original code written by Vigo et al. in C++, I have chosen
Java and a purely object oriented approach. The choice of Java is due to its cross-
platform capabilities easing further development of others regardless of platform.
As this thesis demonstrates, the approach developed by Vigo et al. for the bin-
packing problem can also be adopted with success to attack various other problems
when reformulated as packaging problems. These reformulation might have specific
structures allowing us to increase the efficiency of the algorithm, but rather than
having to rewrite the code from scratch each time the object oriented approach
allows one to replaces the problem specific objects and re-run the code.

Further, it is also easy to add a user interface such as graphic representation of
the algorithm. A good graphic representation aids a researcher in understanding the
underlying dynamics of the algorithm and also provides students with an additional
learning tool thereby increasing understanding. One will be able to step through the
algorithm and see how a target vehicle is chosen and attempts to empty it are made.
Many factors can be used to determine the target vehicle, but it is often extremely
difficult to say anything about the significance or even the sign (!) of correlation
of the factors. Having a graphical representation allows the human mind to use its
pattern-recognizing abilities in addition to one’s gut feeling and analytical skills.

Summing up, the author believes that the object oriented approach simplifies the
use and further development of the code. As pointed out by Cordeau and Laporte
in [5]

[...] the research community is used to assessing heuristics with respect
to accuracy and speed alone, but simplicity and flexibility are often ne-
glected. Yet these two attributes are essential to adoption by end-users
and should be central to the design of the next generation of algorithms.

Finally, besides making the code more approachable, it also adds the possibility
of using framework specific capabilities such as unit testing of code, and design
patterns. Excerpts of the source code are found in Appendix A, while the full source
code is available from http://baltzersen.info/vrp.php.

Despite a lot of time and energy being put into the tuning section, it quickly
became clear that a rigorous tuning and analysis was beyond the scope of this
thesis. Instead a combination of statistical analysis and gut-feeling has been used
to tune the parameters. Further, not all parameters have been tuned, but rather a
prioritized order has been established. Not being able to perform a rigorous tuning,
this thesis at least provides a blueprint of how such one could be carried out.

After the tuning phase and with the results on the Solomon instances this thesis
sums up its finding and concludes. The conclusion includes an assessment of the
value of further research and how one could approach it. It is found that albeit
results being relatively far from the best known, further research is likely to be
fruitful.

3
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1 Introduction

This thesis consists of Chapter 2 introducing the basic theory needed to under-
stand the algorithm. While the chapter is written for a general audience the selec-
tion of material has been dictated by the components of what follows and efforts to
keep it brief are made. Chapter 3 deals with the VRP in detail: its formulation, a
problem-specific heuristic, and describing the algorithm by Vigo et al. and its adap-
tion to VRP. The implementation of the algorithm, comments on the specific code,
and other computer science issues are briefly presented and discussed in Chapter 4.
The computational results are listed and discussed in Chapter 5, while Chapter 6
discusses the results. Finally, conclusions are gathered in Chapter 7.
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CHAPTER 2

Basic theory

This chapter deals with basic theory needed in the remainder of the thesis. We dis-
cuss heuristics and metaheuristics providing examples of both in particular focusing
on the tabu search. The chapter aims to be unrelated to the specific discussion, but
is of course developed keeping what follows in mind.

The exposition is based on a textbook by Wolsey [3]. Additional references
include Glover [4], who originally proposed and coined the term tabu search, and
Cordeau and Laporte who provide a useful survey [5].

2.1 Heuristics and metaheuristics

A vast majority of the problems of interest to both the academic society and the
business world are infeasible to solve exact for all but the smallest instances. This
motivates the use of heuristics. A heuristic should be thought of as an algorithm
yielding a “good,” usually feasible, solution rapidly—that is typically within some
seconds or, on rare occasions, minutes. For some problems that can indeed be solved
exactly albeit requiring a lot of computation time one would still choose a heuristic
in order to quickly find a satisfactory solution. Heuristics can be thought of as a way
to increasing computational efficiency potentially at the cost of solution accuracy.

Coincidentally, a majority of the problems of interest to the business world are
infeasible to solve exact,1 which spawned a great interest in heuristics. In studying
a heuristics interesting questions include:

• Is it possible a priori to say how close to the optimal solution our solution will
be?

• Is it possible a priori to say how close to the optimal solution our solution on
average will be?

Depending on the problem, the quality of a heuristic solution is sometimes ques-
tioned, while at other times any feasible solution will suffice. The latter criterion

1They are non-polynomial time complete, NPC.
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2 Basic theory

is often used even in problems where the quality of the solution is of interest. A
(meta)heuristics is then used to improve the known solution. Meta-heuristics rely
on an initial solution, called the incumbent, to get started.

2.1.1 Greedy heuristic

Two classical heuristics are the greedy heuristic and the local search heuristic. The
greedy heuristic attempts to construct a feasible solution from scratch. The idea
is fairly simple and best illustrated via an example. Considering the (symmetric)
traveling salesman problem (STSP) we wish to construct a greedy solution: Starting
at the office, we simply choose the closest customer at each iteration until all cus-
tomers are visited upon which we return to the office calling it the day. The greedy
heuristic thus sacrifices the big picture and always chooses the immediate “best” op-
tion. Formally, a greedy algorithm needs, among others, a function to determine the
“best” option; in this particular case the Euclidean distance between two customers.

While it is easy to construct STSP instances for which the greedy algorithm
always provides a feasible, but sub-optimal solution there are problems for which
the greedy algorithm will always return the optimal solution. Problems for which no
feasible solution is found, even though one exists, are also possible. The following
are examples of both.

Consider the change problem: A customer needs to get a change of $0.41 and we
wish to use as few coins as possible. A greedy algorithm, in this case our salesclerk,
first picks a quarter, then a dime, a nickel, and finally a penny. This is both a
feasible and optimal solution. But consider instead a monetary system in which the
available coins are 25-cent, 10-cent and 4-cent. In this case the salesclerk would fail
to produce a feasible solution even though one exists.2 A similar problem could arise
in the VRP setting where one could imagine that feasible solutions exists, but none
of them found by a greedy algorithm.

2.1.2 Local search heuristic

We now turn to the local search heuristic. Given an incumbent, S, the local search
defines a neighborhood of solutions around the incumbent denoted by Q(S) and
after examining Q(S) it moves to a new and better solution. The choice is based
solely on information about the solutions in the neighborhood, hence the name local
search. Typically, a neighborhood has more than one solution and if the choice is
based entirely on local maximization the heuristic is sometimes referred to as a hill
climber. Termination is usually controlled by either computation time or when one
has reached a local optimum. Obviously, in both cases the solution is most likely not
a global optimum as the examined neighborhood may be very far from the global
optimum.

For such an algorithm, we need to define Q(S) for all S and a goal function
denoted by f : N → R, where N denotes the space of solutions. The goal function

2The salesclerk would pick a quarter, a dime and then be stuck where as a quarter and four 4-
cents would yield $0.41. This example is of course a reformulation of the well-known knapsack
problem.
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2.2 Tabu search

is used to evaluate a particular solution and often one uses

f(S) =

{
c(S) if S is feasible,
∞ if S is infeasible,

where c simple denotes the cost/objective function of the particular problem. Which
neighborhood-constructing function Q is used is problem specific.

2.2 Tabu search

Both the greedy heuristic and the local search have their limitations, which is why
metaheuristics are introduced. “Meta” is Greek and translates into something like
“higher level” or “beyond.” The term “metaheuristic” was first coined by Glover in
1986 in his article on tabu search [4]. The basic idea of a metaheuristic is to guide a
heuristic to avoid its inherent pitfalls. For example, where the local search efficiently
locates local minima it lacks the broader perspective, which a meta-heuristic sets
out to repair. a metaheuristic therefore needs extensive knowledge of the heuristic
itself.

When our heuristic only operates locally it is natural to pose the question of how
to escape a local optimum in order to shift the neighborhood and discover a better
solution. A first idea would be to allow moving to a solution even though it is worse
than our local optimum. Doing so, the risk of cycling is faced, that is moving from
S0 to S1 only to move back to S0 again and so on and so forth. Tabu search tries
to avoid such cycling by marking certain solutions as tabu meaning that one is not
allowed to return to the solution.

A tabu list is kept, which can be thought of as truncated list of all previous
incumbents. Keeping a complete list and checking if a given solution is already listed
is computationally inefficient. One parameter for the tabu search includes the length
of the list. If too short, cycling is not prevented, while if too long computational
efficiency suffers. The literature often cites a length of seven as a good trade off.
The tabu list is sometimes referred to as short term memory.

Other parameters to be defined are, analogously to the local search heuristic,
how Q(S) is chosen as well as what termination criterion should be used. A fixed
number of iterations or a certain number of iterations without improvement are often
chosen, while a time limit can also be used.

2.2.1 Diversification and intensification

The tabu search uses additional ingredients, diversification and intensification, re-
spectively, needed to build a successful algorithm. Intensification is an algorithm
that tries to find common characteristics among the good solutions found so far
in order to intensify the search for an optimal solution in solutions sharing these
characteristics.

In contrast, diversification looks to investigate solutions with very different prop-
erties from those already investigated in order to escape a local optimum. One way
of achieving this, assuming a minimization problem, would be to decrease the objec-
tive function for solutions far from the current solution, while increasing it for those
who are close. Diversification is also known as long term memory.

7



CHAPTER 3

The vehicle routing problem with time windows

This thesis focuses on using a heuristic, TSPack, originally developed in 2004 by
Vigo et al. [2] for solving bin packaging problems. The algorithm is adapted to the
VRP problem and tries to minimize the number of vehicles used. The only problem-
specific part of the algorithm is an inner solver used to analyze smaller subsets of
customers. We have chosen to use a heuristic proposed by Solomon in 1987 [6] as
inner solver.

In this chapter are introduced the formulation of VRP, the TSPack algorithm,
and the Solomon heuristic. We focus on explaining the algorithms in detail and
motivate each choice. The code of the algorithm has been modified for various
reasons. Some changes stem from the fact that implementing the code in Java is
slightly different from a C++ implementation, while the fact that the code is object
oriented implies changes as well.

3.1 Formulation and setup of VRPTW

We wish to present a mathematical formulation of the VRPTW and begin with
an intuitive understanding of the problem before turning to a rigorous formulation.
Vehicles start at a depot have to visit a given number of customers placed on a
map. Each customer has a continuous time window during which the visit must be
initiated and a certain demand for goods. The fleet consists of identical vehicles
with a capacity constraint. All the vehicles have to return to the depot before a
fixed point of time. The time it takes to travel between two customers is equal to
the distance between them; such a problem is sometimes referred to as a Euclidean
problem.

In order to formalize this, we consider a weighted graph with arcs A referred to
as (i, j). To ease the formulation the graph contains a start depot denoted by 0,
and an terminal depot denoted by n+ 1 both at the same location. Doing so allows
us to have unused vehicles travel between the two depots—corresponding to never
leaving the actual depot in the first place. Further, some of the constraints in the
formulation become neater this way.

8



3.2 The bin packaging relaxation of VRPTW

The set of vehicles is denoted by K, N = {0, . . . , n+ 1} is the set of all nodes—
customers as well as both depots—while C is the set of the customers only. Customer
i’s service interval is denoted by [ai, bi], ai, bi ∈ R+, while the demand is denoted
di. tij is the time it takes to travel between customer i and j; here, as mentioned,
simply the distance between the two. sik ∈ R+ is the time a vehicle k begins to serve
customer i if k visits i. If not, sik is meaningless and simply assigned an arbitrary
value satisfying the constraints below. Finally, the formulation uses binary variables
xijk defined by

xijk =


1 (i, j) ∈ A is used by vehicle k,
1 i = j, and
0 otherwise.

The formulation as an linear integer program can now be written as:

z := min
∑
k∈K

∑
j∈C

x0jk (3.1)

subject to∑
k∈K

∑
j∈C

xijk = 1, ∀i ∈ N (3.2)

∑
j∈C

x0jk = 1, ∀k ∈ K (3.3)

∑
i∈C

xihk −
∑
j∈C

xhjk = 0, ∀h ∈ N, ∀k ∈ K (3.4)

∑
i∈C

xi,n+1,k = 1, ∀k ∈ K (3.5)∑
i∈N

di

∑
j∈C

xijk ≤ q, ∀k ∈ K (3.6)

sik + tij − (1− xijk)(bi − aj) ≤ sjk, ∀i, j ∈ N, ∀k ∈ K (3.7)
ai ≤ sik ≤ bi, ∀i ∈ N, ∀k ∈ K (3.8)
xijk ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ K (3.9)
sij ∈ Z+, ∀i ∈ N, ∀k ∈ K (3.10)

The objective function in (3.1) expresses the fact that we wish to minimize the
numbers of vehicles leaving the start depot to visit a customer. (3.2) makes sure
that each customer is visited exactly once, while (3.3)-(3.5) makes sure that each
route is a connected path actually beginning in the start depot and ending in the
terminal depot (for balance). The capacity constraint is given by (3.6), while (3.7)
and (3.8) deal with the time window constraint. (3.9) and (3.10) define the solution
space.

The complexity of this problem is NP-hard, which easily follows from the fact
that the TSP, being a special case, is NP-hard.

3.2 The bin packaging relaxation of VRPTW

When solving the VRPTW there are three subproblems to keep in mind: the capacity
constraint on the vehicles, the geographical placement of the customers, and the time
intervals for the service times of each customer. Having to visit customers in the

9



3 The vehicle routing problem with time windows

shortest possible manner is similar to the TSP, while having to visit them in certain
time intervals corresponds to a scheduling problem where one wants to minimize
the tardiness of a set of machines. The third ingredient of the VRPTW is what
of particular interest to us in this case, namely trying to pack the demand of the
customers into vehicles with a fixed capacity.

Viewing the problem as such, it is very similar to a packaging problem as the
one considered by Vigo et al. And it is this similarity that we are concerned with
in the remainder of this thesis. The idea is to take the approach proved successful
by Vigo et al. in the packaging setting, adapting it to solving a VRPTW, and then
refine it by using the additional structure given in a VRPTW setting.

In order to give the reader a better understanding of this, we briefly introduce
the packaging problem considered by Vigo et al. A more rigorous treatment is in
[2].

3.2.1 The multi-dimensional bin packing problem

We present the three-dimensional bin packing problem (3BP). Vigo et al.’s algorithm
is designed to solve both the two and three dimensional case, but as the first is a
simple special case of the latter, we focus our efforts.

Consider a boxed item j, j = 1, . . . , n with dimensions wj , hj , and dj , and
identical bins with dimension W , H, and D. The simplest variant of the problem is
to pack the n items in as few bins as possible. Additional constraints might require
that the boxes have a certain orientation (relevant, for example, for containers of
liquid). The same framework can be applied in cutting contexts. One starts out
with a big block of material which needs to be divided into n smaller blocks. In such
a context a further constraint might be that it is guillotine cutable, that is that any
cut is from edge to edge and parallel to the edges of the initial block.

It pays to keep the original context in mind as some of our vocabulary is from
the original paper including, obviously, the name of the algorithm: TSpack. This is
done to make comparison easy, but also to aid intuition.

3.3 TSpack tabu search adaption

The algorithm by Vigo et al. [2] chiefly consists of five parts described in detail
below:

• Main algorithm, which is controls the flow of the program. Referred to as
TSpack,

• Filling function controlling which vehicle to try to empty,

• Inner solver, denoted by A, returning solutions to subproblems,

• Search algorithm, which searches the neighborhood, and

• Diversification algorithm.

These parts are tightly weaved together and the algorithm relies on all. Unfor-
tunately, it is not possible to introduce all concepts simultaneously and the reader
has to live with the fact that a section might refer to a discussion of a following
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3.3 TSpack tabu search adaption

section. To aid comprehension of the concepts much effort has put towards making
it abundantly clear whenever this is the case.

Note that, the algorithm uses a non-standard tabu list, which is described in
Section 3.3.6. To conclude the section parameters of interest are summarized.

3.3.1 TSpack, main algorithm

A bit unusual for a tabu search algorithm, TSpack itself does not directly strive
to perform any local improvements, but rather relies heavily on an inner solver
described in detail in Section 3.3.3. This inner solver is called repeatedly throughout
the execution of the algorithm and any change to the solution is made by replacing
the configuration of a specific subset of customers S by A(S).

Keeping in mind that the algorithm strives to minimize the number of vehicles
used in visiting the customers, the idea is to determine a vehicle—referred to as
the target vehicle—which we will try to eliminate by reassigning customers. The
criterion used is based on a filling function, φ, such that the target vehicle is the
arg optimumφ(v) over all active vehicles v.1 The filling function is described in
Section 3.3.2.

The first incumbent solution, A0, is a user controlled parameter. This is ana-
lyzed, a target vehicle is identified, and control is passed on to the search algorithm.
The search algorithm potentially decreases the number of vehicles by replacing the
customers of the target vehicle. At some point, though, all its options have been
explored and a diversification process is initiated.

This procedure is repeated until an iteration limit, l_max, has been reached or,
alternatively, a time limit can be used. Before beginning the algorithm a lower
bound L is calculated, which in our case is simply the aggregated demand of the
customers divided by the vehicle capacity. Throughout the algorithm it is checked
whether the lower bound is reached and if so the algorithm terminates.2

To understand the dynamics of the algorithm it is vital to note that one iteration
of the algorithm corresponds to the search algorithm completing one search of the
neighborhood, and a request for diversification. The entire procedure may in pseudo
code be written as

TSpack ()
{
int lowerBound = max(1, (int) ceil(customers.getTotalDemand()
/ vehicleCapacity));

vehiclesUsed = solution.numberOfVehiclesUsed();
if (vehiclesUsed == lowerBound)
return solution;

d = 1;
targetVehicle = Utilities.determineTargetVehicle(solution);

1Where arg optimum is the operator that returns the argument for a given function such that it
is optimized, that is either maximized or minimized depending on the context.

2In practice, the author has never seen the lower bound being reached and in doing so cause
termination. If this would happen one could consider removing the piece of code as one might
be able to find a solution with the same number of active vehicles and a shorter total distance.
This is a good example of how additional structure in the VRPTW setting influences the code.
As the check is computationally very cheap removing the code does not affect performance.
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3 The vehicle routing problem with time windows

int iteration = 1;
while (iteration <= iterationLimit)
{
if (diversify)
Diversification();

diversify = false;
k = 1;
while (!diversify && vehiclesUsed > lowerBound)
{
int k_in = k;
Search();
if (k <= k_in)
targetVehicle = Utilities.determineTargetVehicle(solution, d);

}
if (vehiclesUsed == lowerBound)
return solution;

iteration++;
}
return optimalSolution;

}

3.3.2 Filling function

As described in Section 3.3.1, the filling function is primarily used to pick the target
vehicle. One can think of many factors to consider, but the overall purpose is to
design a function that picks the vehicle whose customers is relocated easily such
that the vehicle can be eliminated. These factors could involve number of customers
visited, used capacity, arrival times structure, and more. More generally, the filling
function can depend on factors involving one or more dimensions of the VRPTW,
and either be intrinsic—only involving the vehicle at hand—or extrinsic—involving
one or multiple pieces of information from other vehicles. This is summarized and
exemplified in Table 3.1.

Note, that this classification would also be applicable to the BPP case. Naturally,
due to the absence of two of the dimensions factors belonging to these are of little
use, but consider the capacity of other boxes could be relevant.

The filling function is defined for any vehicle and thereby orders the vehicles.
While the search algorithm tries to empty the target vehicles using the inner solver
it is of paramount importance to pick the right target vehicles. No matter how well
the inner solver relocates the customers of the target vehicle we do not move closer
to an optimal solution if the wrong target vehicles are picked on a consistent basis.
Much effort is therefore put into finding a suitable filling function, albeit it always
to a certain degree depends on the problem at hand.

As there is no such thing as a generic optimal filling function our diversification
procedure described in Section 3.3.5 to some extent aids the choice of the correct
target vehicle. The filling function is naturally a parameter, which is itself often
parameterized.3

3The filling function originally used for the bin packing problem for the items Si in bin i is

φα(Si) = α
P

j∈Si
vj

V
− |Si|

n
where vj is the size of the item (area or volume), V is the total size
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3.3 TSpack tabu search adaption

Intrinsic factors Extrinsic factors

Capacity • Capacity used by parti-
cular vehicle,
• Distribution of capacity

used among individual
customers.

• Other vehicles with ex-
cess capacity,
• Clusters of customers

high/low in demand.

Arrival times • Waiting time,
• Size of gaps in arrival

times.

• Other vehicles starting
late or ending soon.

Geography • Distance between visi-
ted customers.

• Other vehicles passing
nearby,
• Isolated customers (seed

customers).

Table 3.1: Summary of the nature of potential factors for a filling function. The factors are
split into each of the three dimensions for the VRPTW (vertical) and whether
they involve additional vehicles or not (horizontal). Examples of factors are kept
very abstract.

3.3.3 Inner solver

The inner solver is denoted by A and for any subset of customers S the corresponding
solution is denoted by A(S). Formally, A(S) can both refer to the solution itself and
the number of vehicles used in the particular solution. As this is always clear from
the context no additional notation is introduced.

There is nothing that dictates whether the inner solver should be a heuristic or
an exact solver. There are, though, several things to keep in mind before deciding
on which solver to use. The solver is run extremely often and runtime is therefore a
major factor. As will become clear shortly, the size subset of customers considered
very much depends on the size of the neighborhood currently being searched.

For a small number of customers it might be feasible to use an exact method
where as larger subsets of customers are naturally best handled by heuristics. There
are no limitations to how the inner solver can be chosen; one interesting approach
could be to have it solve small instances exactly while using a heuristic for larger
instances.

3.3.4 Search algorithm

The search algorithm is the most complex part, both conceptually as well as imple-
mentation wise. It is also this algorithm that incorporates the use of the tabu list
described in Section 3.3.6.

As the aim of the algorithm is to empty the target vehicle each of its customers
is considered in turn and tried to be placed on another route. A crucial ingredient
in this relocation of customers is the size of the neighborhood denoted by k, which

available, n the number of bins, and α > 0 a parameter.
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3 The vehicle routing problem with time windows

translates as follows: Consider the set of vehicles excluding the target vehicle. Then
a k-tuple of these vehicles are considered. Their customers and the specific customer
to be moved are put in a set S for which a new solution, A(S), is produced using
the inner solver A. This solution is analyzed and further behavior is divided into
three cases.

Each of the three cases has to decide whether or not to execute the move and how
to update the k value. Executing a move means that the current configuration of the
k vehicles considered is replaced by the new configuration. It does not necessarily
affect the best solution found so far as it is stored separately, but the two are of
course compared and the best found solution updated accordingly.

As explained in Section 3.3.6 a real number called penalty is used in Case 2 and
3. It is initialized to ∞ and not changed in Case 2. Case 3 is treated below.

Case 1: A(S) < k This case is straightforward and no tabu list is consulted. If,
beginning with k vehicles, it is possible to add a customer and obtain a configuration
with strictly fewer than k vehicles, the the overall number of vehicles is immediately
reduced by 1. The move is executed, and k is reduced by 1 unless k = 1 in which
case it is left unchanged, that is k = max{1, k − 1}. Control is returned to TSpack.

Case 2: A(S) = k If the customer considered, j, is the last visited by the target
vehicle it means that a configuration has been found where the customers from the
k-tuple and j can be visited using k vehicles. This leaves the target vehicle without
assignments and hence cuts a vehicle. The move is therefore executed and k is
adjusted as above: k = max{1, k − 1}.

Otherwise the number of vehicles stays the same: The target vehicle remains
and the k vehicles originally considered are all still active. At first, it might seem
promising to move a customer away from the target vehicle without increasing the
total number of vehicles. One might wish to go ahead and execute the move right
away, but on second thought there is no guarantee that this will be an overall
improvement. It could easily be that no further customers could be removed from
the target vehicle, control would return to TSpack, and a new target vehicle would
be identified. This might very well be the vehicle to which we have just added the
customer and we might end up moving the customer back.

This is exactly the kind of cycling described in Section 2.2 and therefore a tabu
list is introduced. It is first checked if the move is tabu: If so, the next k-tuple is
considered, but if not the move is executed and control returns to the main algorithm.

Note that even if the move is executed k is kept unchanged. We have not de-
creased the numbers of active vehicles, but have only taken an uncertain step towards
a potential reduction. There is no reason to believe that reductions would be found
in the setting of a smaller neighborhood, which we have previously searched.

Case 3: A(S) = k + 1 and k > 1 At first glance this is a less attractive situ-
ation. Unless the specific customer is the last being visited by the target vehicle
an additional vehicle is needed. Nevertheless, we allow such a move under certain
circumstances.

Consider the set of the k+1 vehicles used in A(S) and determine the local target
vehicle t̄ for this set in a similar manner to how it is done by the main algorithm.
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3.3 TSpack tabu search adaption

Considering the set T := (St \ {j}) ∪ St̄, where j is the current customer and t
the original target vehicle. T is the residual customers of the target vehicle plus
the local target vehicle’s customers. If the inner solver finds a solution for this set
that only uses one vehicle, that is A(T ) = 1, a new move is obtained. This move
still uses k + 1 vehicles, but the target vehicle t is left with a single customer to
visit. Combining A(T ) with A(S) this last customer is removed as well and we have
succeeded in emptying the target vehicle.

Suddenly, such a move seems not good, but at least promising at the same level
as Case 2. It is easy imaginable that several such moves could arise during the
search of a neighborhood of fixed size, and we therefore decide to store the move
and evaluate it against its peers. For each such moves that is not tabu an entity
denoted by penalty is calculated. The original solution S has been changed such
that the local target vehicle t̄ has been removed and instead the one vehicle making
up T has been added. The minimum of the filling function over this set of these
vehicles and store this number as the penalty. In formulae it reads

penalty := min
M∪T
{φ(·)}, (3.11)

where M is the set of vehicles from the original solution excluding t̄. Hereafter the
code does not return, but rather the search continues in hope of stumbling upon a
Case 1 or 2 move.

When having searched the entire neighborhood without returning to the main
algorithm, that is not having executed Case 1 or 2, it is checked whether Case 3 has
ever occurred. If this is not the case it is checked if the neighborhood has reached
its maximum size and if so the main algorithm calls the diversification algorithm.
Otherwise the neighborhood size is increased by one and the search begins anew. If
Case 3 has in fact occurred the move corresponding to the lowest penalty is executed.

The user provides the maximum neighborhood size as a parameter k_max. In [2],
Vigo et al. uses k_max=3, which of course not need to be the optimal choice in a
VRPTW setting, but probably a good starting point for further analysis/tuning.

Further, we wish to argue why it makes sense to require k > 1 in Case 3. With k =
1 the neighborhood is very small, and only very obvious relocations are possible (such
as after a Case 2 diversification, see Section 3.3.5). Technically there is no problem
going through all the steps of Case 3 for k = 1, but it is simply computational
inefficient. When k = 1 we are not looking to do too much analysis due to the
simpleness of the case and as we are well-aware of the limits of a small neighborhood.
We thus choose to save the gun power for later.

Due to the nature of the tabu list, the k > 1 restriction also influences Case 2 as
described in Section 3.3.6.

3.3.5 Diversification algorithm

As described in Chapter 2, diversification is a process designed to aid the search in
finding a better solution by making sure the neighborhood being searched is changed
radically periodically. When initializing the tabu search algorithm described above
a parameter k_max, which determines the largest neighborhood to search, is passed.
When the size of the neighborhood reaches this value the diversification algorithm is
executed. d_max is a user specified parameter, which we refer to as “diversification
limit,” and diversification is split into two cases accordingly.
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3 The vehicle routing problem with time windows

Case 1: d ≤ z and d ≤ dmax This is, if at all, a very mild form of diversification.
Henceforth, our target vehicle is picked as the vehicle with the dth lowest filling
function value instead of simply the lowest. We then increase d by 1 and return to
searching the neighborhood. d ≤ z makes sure that the dth lowest value is well-
defined as the solution actually contains sufficient vehicles.

Case 2: Otherwise Otherwise we turn to a drastic kind of diversification. Here the
bz/2c vehicles with the lowest filling function value are each visited by an individual
vehicle. We further reset all tabu lists and put d to 1.4 The idea is to really scramble
our solution space by taking the half of the most promising vehicles and start all
over assigning their customers.

As noted above, diversification is executed exactly once for each new iteration. If
therefore the iteration limit, l_max, is less than d_max, Case 2 of the diversification
procedure is never reached.

Figure 3.1: The filling function provides an ordering of the vehicles with the lower values
representing the more promising vehicles. A good filling function together with
d_max classifies the vehicles into two groups: emptiable and non-emptiable. In
the figure the vehicles to the left of the d_max mark are thought to have a high
potential for being emptiable.

It should also be noted that while Case 1 might not seem sensible as a diver-
sification procedure it serves a very important purpose. Finding a filling function
that picks the right target vehicle for all types of problems is impossible. The filling
function orders the vehicles according to value and by introducing Case 1 the d_max
vehicles with the smallest value are target vehicle candidates. This means that in-
stead of the filling function having to be perfect for all types of problems it suffices
to have a function that approximately orders the vehicles according to how easy
they are to empty. In other words, Case 1 introduces a certain tolerance in choice
of filling function across problems. Figure 3.1 presents a graphical representation of
the close interplay between the filling function and d_max.

This also implies that while using a small value of d_max guarantees that “real”
diversification is performed more often, a larger value of d_max increases the thor-
oughness with which the neighborhood is searched. As so many times before, choos-
ing d_max becomes a tradeoff for which it a priori is very difficult to say anything
about.

Diversifaction ()
if (d <= z && d <= d_max){
d++;
Consider vehicles with the dth lowest filling function
value as target vehicles.

}
else

4See Section 3.3.6 for details on the tabu list implementation.
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{
d=1;
Visit the floor(z/2) vehicles with lowest filling function
value with separate vehicles.
TabuListContainer.Reset ();

}

3.3.6 Tabu list of TSpack

The tabu lists used for this particular problem differs from the norm in two ways.
First a separate tabu list is maintained for each neighborhood, implying that k_max
tabu lists are kept. It is of course not necessary for these lists to have the same length
tl_length, but in the implementation that follows this is the case.5 Secondly,
it is not the solutions themselves that are stored, but rather a numerical value
representing the solution. Why this works is not obvious, but explained in the
following.

In computer science one often encounters the problem of checking whether a
given object is member of a set. A tabu list is of course nothing else: given a move
and a set of moves—the tabu list—is the move a member of the set? A naive way
to do this is by iterating through the set and for each member to check if it is equal
to the particular object. This works splendid for small sets and simple objects such
as numbers, but as the complexity of the objects increases it might take very long
to perform even a single equality check (consider for instance a 1000-node weighted
graph).

To speed things up computer scientists came up with the idea of a hash function
h and hash table. The hash code is the value of the hash function with a particular
object as argument. A good hash function has the property that two different objects
results in two different hash codes with a high probability. Note though, that the
probability need not be 1 or, equivalently, the hash function does not need to be
injective. Considering a 1000-node weighted graph G with weights w1, . . . , w1000, we
might use h(G) :=

∑√
wi as a hash function. Whenever an object is put in a hash

table the hash value is calculated once and stored instead of the complex object.

Example Let S = {A, . . . , G} be a set of seven graphs and X a particular graph
for which we wish to investigate whether X is in S. We already have the hash table
h(S) storing the corresponding hash codes of the elements of S. We can therefore
calculate h(X) and easily check if h(X) ∈ h(S), which with high probability yields
the same truth value as X ∈ S.

Returning to the code at hand the tabu lists essentially works the same way.
Instead of storing complete information of the previous solutions the corresponding
penalty is kept for k > 1. If a move from Case 2 is executed penalty being∞ is added
to the list and if a move from Case 3 is executed penalty is calculated as shown in
(3.11). A consequence of this implementation is that for each neighborhood size we
cannot execute a move satisfying the conditions of Case 2 until ∞ has disappeared
from the list. This can happen either by a sufficient number of intermediate moves
being executed or when executing Case 2 of the diversification procedure. For k = 1
penalty is not defined and instead the value of the filling function is stored.

5In Vigo [2] they use different lengths.
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3 The vehicle routing problem with time windows

But why do we introduce and store this rather strange penalty value instead
of just using the total distance, which our example argues is sufficiently unique?6

The answer lies in the fact that Case 2 returns a penalty of ∞, which means that
if Case 2 is executed ∞ is stored in the tabu list. Hence as long as the algorithm
searches a neighborhood of the same size—and therefore uses the same tabu list as
hash table—Case 2 cannot be executed until either the tabu lists are reseted or Case
3 returns a solution a number of times corresponding to the length of the tabu list.
What usually happens in practice is that a Case 2 move is executed with a period
of the tabu list’s length.

An important exception to the just presented analysis applies. When k = 1,
Case 3 is never entered and therefore the one entry by Case 2 in the tabu list can
never be “pushed out.” The argument of the exclution of Case 3 for k = 1 explained
in Section 3.3.4 applies to Case 2 as well, but because Case 3 is never entered the
tabu list ensures that a Case 2 move is executed at most once and further restriction
is unnecessary.

3.3.7 Summary of interesting parameters for TSpack

To conclude this chapter we list the possible parameters the user can control. While
any parameter could of course be hard-coded to an arbitrary value the code is
specifically designed to give the user easy and full control of certain parameters.

• Filling function, φ.

• Inner solver, A.

• Incumbent solution, A0.

• Tabu list length, tl_length.

• Iteration limit, l_max.

• Maximum neighborhood size, k_max.

• Diversification limit, d_max.

Some of these parameters, notably the filling function and inner solver, may
themselves be parameterized. Further, one should recall from our discussion above
that in order to use the full power of the diversification algorithm it must be that
l_max > d_max.

Valuable discussion of the parameters and the intuition behind is found in Section
5.1.2.

3.4 Solomon heuristic

Any tabu search algorithm requires an incumbent solution usually produced by a
heuristic and, as is clear from the discussion above, this specific tabu search algo-
rithm needs an inner solver repeatedly. Solomon introduced the following heuristic
in 1987, referred to as the Solomon heuristic in the following, which creates routes
sequentially.

6As the penalty value is based on the filling function it might even be that the total distance has
a better distribution compared to the penalty value. In practice, though, the filling functions
are just as good.
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The basic idea in building the routes one by one is to begin with a seed customer
determined according to some criterion such as distance from the depot. One can
think of the seed customer being the “center of mass” of the route about to be build.
Building a solution around this seed customer is done as a repeated two step process.

Consider the active route of length m denoted by R = (ρ0, . . . , ρm) where ρi, 0 <
i < m, are customers and ρ0 and ρm are the start and terminal depot, respectively.
When first initialized the route consists of the start depot, the seed customer, and
the terminal depot. For each customer u not yet part of a route a first criterion
based on a function g1 is used to determine the optimal position in R for u. Let
p : C → {1, . . . ,m − 1} be the optimal index with respect to g1 at which to insert
the customer into R. Thus

p(u) = arg optimum
k

g1(ik, u, ik+1).

g1 can be chosen as a function of any change imposed by adding u to the route at
the specified index, such as delay, length of detour, incremental capacity, and so
on. Usually one would choose a weighted average and specifically in this thesis g1 is
chosen to be the average of delay and detour.

Secondly, after the optimal index is determined for each customer, we wish to
find the optimal customer u∗ to insert (at p(u∗)). A second function g2 may be used
for this step, such that

u∗ = arg optimum
u

g2(ip(u), u, ip(u)+1)

Note that it is feasible to consider the situation g2 ≡ g1, but of course, g2 could
depend on different factors or the same factors, but with different weights. Here, we
use g2 ≡ g1.

From the above discussion it is clear that the only parameters of the Solomon
heuristic is the choice of g1 and g2, who themselves of course can be parameterized.
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CHAPTER 4

Algorithm and program structure

This chapter describes the platform and tools used for development of the code,
and the test instances used in Chapter 5. Much terminology comes from computer
science and it is beyond the scope of this thesis to explain all terms in detail. The
interested reader is encouraged to consult resources of the field such as [9].

Besides documenting the development process, the purpose of this chapter is to
enable anybody with a basic understanding of Java to pick up the source code and
use or adapt the code.

Excerpts of the source code are found in Appendix A, while the complete source
code can be found online at http://baltzersen.info/vrp.php.

4.1 Development platforms

The code is written entirely in Java using Eclipse as IDE running on Linux Ubuntu
9.10 all of which are open source. Hence any researcher or student with a computer
available is able to compile and run the code. The entire code has been written
from an objective programming approach in order to increase readability as well
as usability. Having the code structured in objects makes it easier to read and to
add or change functionality such as a graphical representation. Naturally, a basic
understanding of the object oriented paradigm is a plus.

While objects can be slightly less computational efficient, keeping the quote from
the introduction by Cordeau and Laporte in mind, the author believes that this is
a small sacrifice to make. Further, it has made testing the use of various heuristics,
and filling functions much easier using the so-called strategy pattern ensuring that
objects in the code can be changed effortlessly.1

1The strategy pattern is a so-called “design pattern”—that is a way to solve a common problem
programmers face in various situations.
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4.2 Program and data structures

4.2 Program and data structures

4.2.1 Class description

The TSPack algorithm itself is contained in the class TabuSearch with a constructor
specifying the parameters used when running the algorithm. Though there in total
are more than ten classes the following play a key role in the program. Solution
represents a solution, but also holds methods to change a given solution, that is
execute a move. The Vehicle class holds all information about a vehicle such as
customers being visited, capacity used and so on. The strategy pattern is used for
both the inner solver and filling functions where the abstract nature of both are
describe by AbstractInnerSolver and AbstractFillingFunction, respectively.

The other classes of the program are added for convenience and to keep the
objects as loosely coupled as possible.

Figure 4.1: The key classes of the program depicted in pseudo-UML notation. The Vrptw-
class initiates the TabuSearch-class and starts the program.

4.2.2 GUI implementation

In order for the author to visualize how the algorithm searches a given neighborhood
a simply and unpolished graphical user interface (GUI) was implemented. It is fun to
play around with, but of very limited use to anybody not familiar with the algorithm.
The code is found in the view-package.

4.3 Test instances

The test instances used for benchmarking and parameter tuning are the Solomon
instances provided by M. Solomon in 1987 [7]. There is a total of 56 instances
available in six groups: “r1xx”, “r2xx”, “c1xx”, “c2xx”, “rc1xx”, and “rc2xx.” “r”
denotes that the customers are randomly distributed, “c” that the customers are
placed in clusters, while “rc” denotes random clusters. “1xx” are problems where
the customers have comparably brief time windows whereas “2xx”-problems have
much longer time windows. Longer time windows increases the number of possible
solutions and therefore poses a tougher challenges, especially for exact methods.

The format of the Solomon data files are as follows:

<Instance name>
<empty line>
VEHICLE
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NUMBER CAPACITY
K Q

<empty line>
CUSTOMER
CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME
<empty line>
0 x0 y1 q0 e0 l0 s0
1 x1 y2 q1 e1 l1 s1
... ... ... ... ... ... ...
100 x100 y100 q100 e100 l100 s100

The best known solutions to the Solomon instances are listed in [8].
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CHAPTER 5

Computational results

This chapter consists of two parts: Parameter tuning and comparison of the results
of the algorithm to the best-known solutions of the Solomon instances. In the first
section we discuss what makes a good solution and given a myriad of parameters
where to focus our efforts. These finding are then discussed and summarized, while
the second section contains the comparison of the Solomon instances.

5.1 Parameter tuning

Before we begin with the actual parameter tuning, we need to answer three funda-
mental questions:

1. What constitutes a good solution?

2. Which parameters to should we focus on? And why?

3. Which data sets should we use for tuning the parameters?

Regarding the first question, our concern is primarily to reduce the number of vehi-
cles and this is therefore the first objective to consider when evaluating a solution.
As a second objective the total distance of a solution is naturally considered with
running time being the third and last objective.

While the first two objectives are obvious choices analyzing the running time is
not. We have earlier argued that the filling function is of paramount significance in
finding a good solution, because it is important how quickly and correctly a useful
target vehicle is located. A filling function doing a poor job of finding a target
vehicle either results in a worse solution, an increase in running time, or both. As
our analysis will show there is no strict correlation between a solution’s quality and
running time. We therefore naturally prefer a set of parameters able of finding a
solution of similar quality in significantly less time.

As for the second question, we have chosen to focus on two classes of parameters:
Those belonging to the filling function and d_max, l_max, and k_max from the search
algorithm.
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5 Computational results

The length of the tabu list is already well-investigated and some off-the-record
experiments quickly confirmed that values between 7 and 9 seemed promising. These
are used throughout the project. An essential part of the algorithm that we do
not test here due to time limitations is the inner solver. The reason for doing so
is a belief that the filling function is of fundamental importance compared to the
inner solver. While one could easily imagine that some choices/parameterizations
of filling functions fit better with some inner solvers the filling function identifies
some common features between promising target vehicles regardless of inner solver.
The author also believes that if one were to investigate the effects of different inner
solvers one would necessarily have to find a good filling function first; it makes little
sense to compare inner solvers trying to empty poor target vehicles.

By the same argument, we have chosen to tune the parameters for the search
algorithm after tuning for the filling function.

There are 56 Solomon instances described in Section 4.3, but should they be
used for parameter tuning and, if so, which? Criticism of the Solomon instances is
plentiful, but nevertheless they are an important benchmark set for the academic
society. We picked three data sets on which the algorithm performed poorly and
used these for tuning: rc108, r112, and r211. Further, it quickly turned out that we
needed at least one additional data set, which we for no particular reason chose to
be r101. Due to the vast amount of parameters involved in the tuning it was not
feasible to perform all calculations on all sets, but on the other hand focusing on
merely one would not give us sufficient data. Individual considerations are therefore
needed throughout the tuning process.

5.1.1 Filling function

As described in Section 3.3.2 there are a myriad of potential factors to consider
when constructing a filling function. Here we solely focus on intrinsic factors and
try to cover each of the three dimensions as well as possible. Naturally, many others
factors could have been used as indicators for the dimensions; see Table 3.1.

The notation developed does not reflect which vehicle is considered, because
intrinsic factors by definition only depends on the particular vehicle. Consider a
vehicle visiting n customers taking up a total capacity of c. Let nt denote the total
number of customers with aggregate demand ct. Further, denote by t0, t1, . . . , tn−1

the realized arrival times at each of the n customers with t0 = 0 the starting time
at the depot. Finally, let d0, . . . , dn−2 with di being the distance between customer
i and i+ 1.

We consider the following nine factors each with a corresponding parameter aj ,
j = 1, . . . , 9. The parameters are normalized such that

∑
aj = 1.

1. “arrival time factor:”
∏
tj+1 − tj with parameter a1,

2. “distance factor:”
∏
dj with parameter a2,

3. “filling factor:” c
ct
− n

nt
with parameter a3,

4. “minimal arrival time:” min(t1 − t0, . . . , tn − tn−1) with parameter a4,

5. “average arrival time:”
P

tj
n with parameter a5,

6. “maximal arrival time:” max(t1 − t0, . . . , tn − tn−1) with parameter a6,

7. “minimal distance:” min(d0, . . . , dn−2) with parameter a7,
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5.1 Parameter tuning

8. “average distance:”
P

dj
n with parameter a8, and

9. “maximal distance:” max(d0, . . . , dn−2) with parameter a9.

Most of factors are straight forward, but some require some additional interpre-
tation. 1 and 2 are similar: Both are the product of differences either in the time
or geographical dimension. If the number is small all customers are nearby each
other—either in a distance or time sense. If, on the other hand, the number is large
then either a few customers are very far apart or the customers are distributed very
equally. 3) is the original filling function from the Vigo et al. [2] paper giving an
indication of the capacity used by the vehicle compared to the ratio of customers vi-
sited. 5) and 8), too, are similar. 8) is a genuine average, whereas 5) is a bit tougher
to interpret. Consider two vehicles that both check in at the depot to conclude their
tour at some time τ̃ and both visit k customers. The factor given in 5) is larger
for the vehicle that makes more stops towards the end. Albeit not adding a lot of
intuition, the factor 5) is added for reasons of completeness.

For the most part, it seems natural that the above are some of the factors that
should be studied, but a priori it is very difficult to say whether a given factor is
positively or negatively correlated, if significant at all, with a vehicle being easy to
empty. This is discussed in detail in Section 6.2.

To begin our analysis we simply ran the algorithm on a given data set fixing all
parameters except a1 through a9 for which we required (a1, . . . , a9) ∈ {0, 1}9. Figure
5.1 visualizes the data found in Table B.1. The figure shows that there is no simple
correlation between running time and quality of solution. A good solution—both
in terms of aggregate distance and number of vehicles used—may be found quickly
as well as slowly. It further shows that the effectiveness of the algorithm is greatly
influenced by the nature of the filling function.
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Figure 5.1: V2 is running time, V3 number of vehicles used, and V4 is the aggregate costs.
All 512 observations for the rc108 data set. The data is found in Table B.1.

Looking at Table 5.1 the top 15 results are listed and we shall try to infer which
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parameters are the most significant.1 We wish to derive as much information as
possible from the data concerning rc108 only and when no further conclusions can
be made r112 and r211 are introduced. All of the observations uses three to six
factors so it seems that combining some, but not all factors is fruitful. We note that
a8 only appears in two cases both having dramatically longer running times. From
this a8 = 0 is inferred.

A similar analysis applies to a4: it is only part of three observations and one
of them has significantly longer running time than the others. This excludes five
of the 15 potential parameter configurations with all of the remaining observations
including a1 and a5. The remaining ten configurations are now applied to r112 and
r211.

CPU V Distance a1 a2 a3 a4 a5 a6 a7 a8 a9

188 13 1799.65 0.25 0.25 0 0 0.25 0 0.25 0 0
189 13 1799.65 0.2 0.2 0.2 0 0.2 0 0.2 0 0
756 13 1801.26 0 0.25 0 0 0 0 0.25 0.25 0.25
757 13 1801.26 0 0.2 0.2 0 0 0 0.2 0.2 0.2
153 13 1802.82 0.17 0 0.17 0 0.17 0.17 0.17 0 0.17
154 13 1802.82 0.2 0 0 0 0.2 0.2 0.2 0 0.2
149 13 1810.01 0.2 0 0 0.2 0.2 0.2 0 0 0.2
149 13 1810.01 0.17 0 0.17 0.17 0.17 0.17 0 0 0.17
947 13 1818.2 0 0.2 0 0.2 0 0.2 0.2 0 0.2
130 13 1818.97 0.33 0 0 0 0.33 0 0.33 0 0
130 13 1818.97 0.25 0 0.25 0 0.25 0 0.25 0 0
133 13 1818.97 0.33 0 0 0 0.33 0 0 0 0.33
133 13 1818.97 0.25 0 0.25 0 0.25 0 0 0 0.25
134 13 1818.97 0.25 0 0.25 0 0.25 0.25 0 0 0
135 13 1818.97 0.33 0 0 0 0.33 0.33 0 0 0

Table 5.1: Table of the top 15 solutions for the rc108-data set sorted by total costs. CPU
lists the running time in seconds, and V the number of vehicles. Common for all
solutions is that they have tl_length=9, l_max=6, k_max=3, and d_max=3.

The observations from r112 and r211 are summarized in Table 5.2. In general
there is little variance in the results and the r211-observations gives very informa-
tion. The stability of the results is seen as a positive indicator for the fact that we
are getting closer to finding a good filling function. Luckily, the r112-observations
provide more information and we focus on the six best solutions. From these we
infer that a2 = 0, that there should be three or four factors in our filling function,
and that a1 and a5 are among these.

Unfortunately, it is rather difficult to say more about what set of parameters
should be chosen. We therefore apply the six candidates on the data set r101. The
results are summarized in Table 5.3 presenting us with two candidates for a filling
function, namely the third or the fourth observation. As it would be nice to have
at least one factor from each dimension in our filling function we choose the fourth
observation with a1, a3, a5, and a9 non-zero. Perhaps surprising, a5 is non-zero
despite being difficult to give any intuitive interpretation.

Having argued that a1, a3, a5, and a9 non-zero seem like a good choice for
significant parameters in our filling function, we wish to investigate whether or not
they should contribute with the same weight. Representing all three dimension, it
might be that one dimension is more crucial to finding a good solution. The effects
of changing the weights are summarized in Table 5.4 from which it is seen that doing

1In the following this is done using intuition rather than rigorous statistics. See Section 6.2 for
further discussion.
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CPU V Distance a1 a2 a3 a4 a5 a6 a7 a8 a9

r211 183 4 1985.01 0.25 0.25 0 0 0.25 0 0.25 0 0
r211 177 4 1985.01 0.2 0.2 0.2 0 0.2 0 0.2 0 0
r211 175 4 1985.01 0.17 0 0.17 0 0.17 0.17 0.17 0 0.17
r211 177 4 1985.01 0.2 0 0 0 0.2 0.2 0.2 0 0.2
r211 180 4 1985.01 0.33 0 0 0 0.33 0 0.33 0 0
r211 181 4 1985.01 0.25 0 0.25 0 0.25 0 0.25 0 0
r211 183 4 1985.01 0.33 0 0 0 0.33 0 0 0 0.33
r211 180 4 1985.01 0.25 0 0.25 0 0.25 0 0 0 0.25
r211 182 4 1985.01 0.25 0 0.25 0 0.25 0.25 0 0 0
r211 181 4 1985.01 0.33 0 0 0 0.33 0.33 0 0 0
r112 148 12 1625.03 0.25 0.25 0 0 0.25 0 0.25 0 0
r112 142 12 1625.03 0.2 0.2 0.2 0 0.2 0 0.2 0 0
r112 159 12 1570.35 0.17 0 0.17 0 0.17 0.17 0.17 0 0.17
r112 159 12 1570.35 0.2 0 0 0 0.2 0.2 0.2 0 0.2
r112 171 12 1559.25 0.33 0 0 0 0.33 0 0.33 0 0
r112 171 12 1559.25 0.25 0 0.25 0 0.25 0 0.25 0 0
r112 171 12 1559.25 0.33 0 0 0 0.33 0 0 0 0.33
r112 173 12 1559.25 0.25 0 0.25 0 0.25 0 0 0 0.25
r112 172 12 1559.25 0.25 0 0.25 0 0.25 0.25 0 0 0
r112 171 12 1559.25 0.33 0 0 0 0.33 0.33 0 0 0

Table 5.2: Observations for the r112 and r211 data sets. CPU lists the running time in
seconds, and V the number of vehicles. Common for all solutions is that they
have tl_length=9, l_max=6, k_max=3, and d_max=3.

CPU V Distance a1 a2 a3 a4 a5 a6 a7 a8 a9

r101 914 19 2020.52 0.33 0 0 0 0.33 0 0.33 0 0
r101 909 19 2020.52 0.25 0 0.25 0 0.25 0 0.25 0 0
r101 828 19 1972.31 0.33 0 0 0 0.33 0 0 0 0.33
r101 845 19 1972.31 0.25 0 0.25 0 0.25 0 0 0 0.25
r101 1898 19 1972.31 0.25 0 0.25 0 0.25 0.25 0 0 0
r101 1887 19 1972.31 0.33 0 0 0 0.33 0.33 0 0 0

Table 5.3: Observations for the r101 data set. CPU lists the running time in seconds, and V
the number of vehicles. Common for all solutions is that they have tl_length=9,
l_max=6, k_max=3, and d_max=3.

so at best keeps the quality of the solution, but increases the computation time. Our
final choice of filling function is therefore a1 = a3 = a5 = a9 = 1 as the only non-zero
parameters.

5.1.2 TSpack algorithm

After having tuned the filling function, we turn our attention to the parameters of
the TSpack algorithm itself recalling that the ones we wish to tune are l_max, k_max,
and d_max. Before we begin obtaining and analyzing data it is useful to think about
what role each of these play and which experiments are useful in deciding what value
to use.

l_max has the easiest interpretation as it is simply the number of times the
outer loop is run though; see Section 3.3.1. That is, given fixed d_max and k_max,
increasing l_max never leads to an inferior solution as the inner calculations of the
algorithm are not affected. Therefore we would also expect computation time to
increase approximately linearly in l_max, that is O(l_max).

k_max is the upper limit for the neighborhood size considered when trying to
place the customers of our target vehicle on other routes. Another way to think
about k_max is how thorough the local search is. As for computation time, k_max
gives the largest tuple of customers considered and therefore computation time for
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CPU V Distance a1 a2 a3 a4 a5 a6 a7 a8 a9

rc108 131.0 13 1818.97 0.25 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.25
rc108 112.0 13 1917.51 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.4
rc108 317.0 13 1919.31 0.2 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.2
rc108 135.0 13 1818.97 0.2 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.2
rc108 115.0 13 1917.51 0.4 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.2
r112 173.0 12 1559.24 0.25 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.25
r112 198.0 12 1592.23 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.4
r112 251.0 12 1578.73 0.2 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.2
r112 173.0 12 1559.24 0.2 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.2
r112 198.0 12 1592.23 0.4 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.2
r211 177.0 4 1985.01 0.25 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.25
r211 176.0 4 1985.01 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.4
r211 176.0 4 1985.01 0.2 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.2
r211 178.0 4 1985.01 0.2 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.2
r211 176.0 4 1985.01 0.4 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.2

Table 5.4: Observations for the rc108, r112, and r211 data sets. CPU lists the running time
in seconds, and V the number of vehicles. Common for all solutions is that they
have tl_length=9, l_max=6, k_max=3, and d_max=3.

the inner search is O(
(

n
k_max

)
), where n is the number of customers; increasing

k_max can therefore be very costly in terms of computation time.

This is not to be confused with the claim that increasing k_max always leads to a
higher overall computation time. It might in fact be, as is explained in the following,
that a higher k_max gives a strictly shorter computation time. Nor is it the case
that better solutions are necessarily obtained for larger k_max.

One might expect the solutions to become better as k_max is increased. There are
two reasons why this is not the case. The first is that a time limit potentially tampers
the results. To realize this consider a time limit of say six minutes and compare
k_max=4 to k_max=5 for given d_max and l_max. For k_max=4 the algorithm might
terminate naturally and thereby have performed all diversification steps and what
not. In contrast, for k_max=5 due to the increased computation time of each search
of the neighborhood, it might be that the time limit forces the algorithm to terminate
prematurely. This could mean that some of the diversification mechanisms are not
executed leading to a poorer solution.

The second and more important reason is that the solution space by no means
is well-ordered. Consider a case where both k_max=4 and k_max=5 terminate nat-
urally. How could it be that k_max=4 returns the better solution? While at first
anti-intuitive, the reason is straightforward. The algorithm walks through the solu-
tion space trying to guess what to do in order to find a better solution. Each step is
but a qualified guess, but there are no guarantees. If we were certain what to do we
could improve the solution monotonically and there would be no need for the tabu
search feature. This not being the case, it might happen that during the execution
of k_max=5 the algorithm, in good faith, performs a step that moves us away from
good solutions never to return.

The same argument also shows that a larger k_max might lead to a shorter
computation time. That such examples do in fact exists is not clear at all. The
following provides an example of both:

data CPU #V Distance tl_length l_max k_max d_max
rc108 518.0 13 1777.1104033062443 9 6 4 3
rc108 430.0 13 1860.249250330895 9 6 5 3

with the filling function from above.

28



5.1 Parameter tuning

Despite this, the author’s intuition says that increasing k_max will on average,
considering enough data sets, increase computation time and return a better solu-
tion. Nevertheless, it is important to understand that the complex nature of the
problem imposes certain randomness.

A delicate parameter described in Section 3.3.5 is d_max. As mentioned the
algorithm performs two kinds of diversification, namely a mild form in which the
target vehicle is simply chosen differently, and a stronger form in which the work-
ing solution really gets scrambled. We have earlier noted that choosing the target
vehicle differently aids the filling function as the ordering of the vehicles in terms
of candidates to empty becomes less significant. On the other hand standard tabu
search theory tells us that diversifying by jumping to other regions of the solution
space can be very fruitful.

It is therefore a trade-off between spending more time locally and changing the
investigated neighborhood dramatically. As k_max describes how the local search
is performed there could be a correlation between d_max and k_max. Note that
a priori we do not know how increasing or decreasing d_max affects the solution.
As for computation time increasing d_max leads to fewer changes of neighborhood
each requiring more computation time. Therefore a decrease in computation time
is expected when d_max is increased.

The above discussion raises the question of whether to impose a time limit or not.
The final configuration of the algorithm should have a time limit as off-the-record
experiments have shown that computation time for a few data sets might unex-
pectedly increase to more than an hour while most of the other instances with the
same parameters terminates in minutes. The time limit would get rid of unpleasant
surprises like that.

But what about during the tuning phase? In order to see the real effects of
changing the parameters, which is of great importance when deciding what set of
parameters to use for future problems, we have to set a very high time limit if any.
It was chosen to use 40 minutes, that is 2400 seconds.

Another important question to ask before starting the experiments is whether
to tune for all three parameters at once or take them sequentially? Tuning sequen-
tially is a lot quicker and it becomes feasible to test a lot of different parameters
where a simultaneous testing limits the number of parameters values for each specific
parameter, but includes cross-effects; that is correlation between the factors.

The author believes that the cross-effects are of major importance and therefore
by all means should be included. The iterations limit is closely related to the diver-
sification limit as we have already seen. The diversification limit makes up for the
fact that no fixed filling function will ever be able to order the vehicles correctly for
all problems, but so does the neighborhood limit to some extent. If a less-promising
target vehicle is picked increasing the size of the neighborhood compensates as more
vehicles are included to relocate the customers. Finally, it is a priori very possible
that a cross-effect between the neighborhood limit and the iteration limit exists. If
one increases the neighborhood limit the search might be so thorough that fewer
iterations are needed.

We therefore decide to run test on all three parameters at once on r101, r112,
r211, and rc108. Using the filling function found above and fixing the tabu list
length at tl_length=9, we vary the other parameters as follows:
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• k_max with values in {3, 4, 5},

• d_max with values in {1, 3, 6},

• l_max with values in {6, 9, 12}.

It is by no means simple to get a feeling for the output and the plot in Figure 5.2
guides us in our analysis. The first thing one notices when inspecting Figure 5.2 is
that no clear tendency is apparent. We know that a truly rigorous analysis of the
output is beyond the scope of this thesis and therefore combine the figure with our
gut feeling and a pragmatic approach keeping computation time in mind. We begin
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Figure 5.2: Plot of tuning of search algorithm on r101, r112, r211, and rc108. The tabu list
length is fixed at 9 and the data plotted is shown in Table B.2. For each data
set all solutions use the same number of vehicles and the only difference is the
aggregate distance. The interesting part of the plot is of course to compare the
aggregate distance to the three parameters being tuned.

by considering d_max. The data in Table B.2 clearly confirms our presumption of a
decrease in computation time as d_max increases. This combined with the fact that
for all data sets except r112, d_max=3 seems like a superior choice, makes us fix
d_max at 3. Turning to l_max there seems to be little gain to increase the number
of iterations above 6 except for the r211 data set. Having fixed d_max at 3, we still
get two rounds of diversification by fixing l_max at 6.

Finally, we consider k_max. Again r211 seems to fall out of category2 and for
the other three sets k_max=4 delivers better results than k_max=3, which is also

2A rigorous analysis would include more r2xx sets.
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what was expected a priori. By the same token we would also expect k_max=5 to
give better results, but this is only the case for r112. Recalling that Vigo et al.
in the BPP setting ended up choosing the value 3 and not wanting to deviate too
much without a very rigorous analysis, we stick to k_max=4. This choice is further
supported by computation time being an important factor.

The final parameters then are:

• d_max=3,

• k_max=4, and

• l_max=6.

5.1.3 Summary of tuning phase

A tuning of the filling function has been done by identifying nine potential factors
and testing on four data sets. The filling function was found to depend on four
factors namely

• “arrival time factor:”
∏
tj+1 − tj ,

• “filling factor:” c
ct
− n

nt
,

• “average arrival time:”
P

tj
n , and

• “maximal distance:” max(d0, . . . , dn−2),

all with equal weight. Further, the tuning on the same four sets of the search
algorithm with the above filling function led us to put

• d_max=3, k_max=4, and l_max=6.

5.2 Performance on the Solomon instances

After having identified what we believe is a set of promising parameters it is time to
test the algorithm on all 56 Solomon instances. The time limit is put to 600 seconds,
10 minutes, and a new filling function class, TunedFillingFunction, representing
the tuned filling function is used rather than the class itself used for tuning improving
computational efficiency slightly.

Naturally, we wish to compare our solution to the best known so far, but we also
list the solution found by using Vigo et al. original filling function3 The findings are
summarized in Table 5.5.

It should be noted that the tuned filling function delivers superior results com-
pared to the original filling function. On average, it is quicker, uses fewer vehicles,
and finds shorter routes. There are nine cases where the original filling function finds
a shorter route, but no cases where it uses fewer vehicles. In contrast, the tuned
filling function uses exactly one vehicle less than the original in 20 cases. There is
no apparent pattern for any of these findings.

Despite the adaptions of the filling function to the VRPTW problem and the
good results in doing so, we are still far from the optimal solutions deviating almost
a 100 % in terms of total distance and only finding the optimal number of vehicles
on a mere four instances.

3With the α-parameter cited in Vigo et al. [2] set to 5 as suggest by Mr. Daniele Vigo in an e-mail
correspondence.

31



5 Computational results

Optimal Tuned Vigo
Data V* D* CPU V D ∆D/D* CPU V D ∆D/D*
c101 10 828.94 603 11 1214.75 0.47 600 11 1214.75 0.47
c102 10 828.94 206 10 1759.17 1.12 600 11 1525.33 0.84
c103 10 828.06 600 10 1707.39 1.06 600 10 1707.39 1.06
c104 10 824.78 601 10 1374.64 0.67 609 10 1374.64 0.67
c105 10 828.94 600 11 1220.34 0.47 605 11 1220.34 0.47
c106 10 828.94 602 11 1119.87 0.35 602 11 1119.87 0.35
c107 10 828.94 600 11 1289.85 0.56 602 11 1500.33 0.81
c108 10 828.94 600 11 1535.29 0.85 600 12 1570.71 0.89
c109 10 828.94 602 11 1665.40 1.01 601 11 1817.82 1.19
c201 3 591.56 119 4 999.61 0.69 90 4 999.61 0.69
c202 3 591.56 212 4 1876.51 2.17 122 4 1856.91 2.14
c203 3 591.17 174 4 1952.45 2.30 120 4 2327.16 2.94
c204 3 590.6 222 4 2473.66 3.19 245 4 2473.66 3.19
c205 3 588.88 92 4 1332.37 1.26 74 4 1332.37 1.26
c206 3 588.49 229 4 1671.38 1.84 220 4 1671.38 1.84
c207 3 588.29 131 4 1676.23 1.85 206 4 1676.23 1.85
c208 3 588.32 256 4 1863.52 2.17 242 4 1863.52 2.17
r101 19 1645.79 601 19 1944.94 0.18 601 20 2063.81 0.25
r102 17 1486.12 600 18 1978.81 0.33 605 19 2053.67 0.38
r103 13 1292.68 602 14 1757.91 0.36 607 15 1820.51 0.41
r104 9 1007.24 349 12 1538.74 0.53 608 13 1635.57 0.62
r105 14 1377.11 283 15 1699.00 0.23 601 16 1828.32 0.33
r106 12 1251.98 600 14 1703.32 0.36 602 14 1794.09 0.43
r107 10 1104.66 242 12 1506.50 0.36 607 13 1719.95 0.56
r108 9 960.88 601 12 1472.79 0.53 600 13 1668.87 0.74
r109 11 1194.73 600 14 1684.81 0.41 600 15 1858.57 0.56
r110 10 1118.59 509 13 1654.39 0.48 606 13 1692.80 0.51
r111 10 1096.72 297 13 1627.56 0.48 600 14 1796.12 0.64
r112 9 982.14 400 12 1571.91 0.60 603 13 1696.85 0.73
r201 4 1252.37 243 5 2186.31 0.75 233 5 2255.87 0.80
r202 3 1191.7 108 5 2152.74 0.81 91 5 2152.74 0.81
r203 3 939.5 121 4 2297.74 1.45 140 4 2209.08 1.35
r204 2 825.52 205 4 1772.84 1.15 156 4 1914.25 1.32
r205 3 994.42 98 4 2183.54 1.20 81 4 2183.54 1.20
r206 3 906.14 175 4 2137.37 1.36 135 4 2126.10 1.35
r207 2 890.61 121 4 2035.41 1.29 104 4 2011.90 1.26
r208 2 726.75 164 4 1902.42 1.62 162 4 1902.42 1.62
r209 3 909.16 160 4 2228.68 1.45 113 4 2342.45 1.58
r210 3 939.34 112 4 2431.22 1.59 263 5 2273.66 1.42
r211 2 885.71 173 4 1985.01 1.24 111 4 2085.27 1.35
rc101 14 1696.94 489 16 2063.69 0.22 605 17 2146.24 0.26
rc102 12 1554.75 555 15 2001.91 0.29 600 15 2064.62 0.33
rc103 11 1261.67 163 13 1855.41 0.47 604 14 1995.14 0.58
rc104 10 1135.48 391 12 1648.93 0.45 601 14 2021.80 0.78
rc105 13 1629.44 600 15 2093.13 0.28 565 16 2211.00 0.36
rc106 11 1424.73 231 14 1964.52 0.38 486 15 2075.38 0.46
rc107 11 1230.48 600 14 1860.71 0.51 326 14 1988.42 0.62
rc108 10 1139.82 521 13 1777.11 0.56 601 14 1947.69 0.71
rc201 4 1406.91 265 5 2605.52 0.85 374 5 2545.25 0.81
rc202 3 1365.65 334 5 2507.51 0.84 434 5 2507.51 0.84
rc203 3 1049.62 153 5 2614.21 1.49 205 5 2687.35 1.56
rc204 3 798.41 172 4 2447.73 2.07 197 4 2253.30 1.82
rc205 4 1297.19 329 5 2563.63 0.98 112 5 2732.36 1.11
rc206 3 1146.32 290 5 2244.41 0.96 74 5 2479.68 1.16
rc207 3 1061.14 268 5 2506.85 1.36 208 5 2488.49 1.35
rc208 3 828.14 241 4 2186.61 1.64 185 4 2186.61 1.64
Avg 7.23 1021.09 346.70 8.79 1877.29 0.97 388.29 9.14 1940.52 1.03

Table 5.5: Performance of TSpack algorithm on the Solomon instances. The best known
solutions are listed together with a tuned version as well as TSpack with the
original filling function by Vigo et al. [2], but otherwise the same parameters,
namely those found in Section 5.1.2. The running time limit was set to 600
seconds. With 56 instances, the tuned filling function finds the shorter solution
in 31 of the cases, the original filling function in nine of the cases while the
remaining 16 are a draw. As for number of vehicles the solution found with the
tuned filling function needs one vehicle less in 20 cases with the remaining 36
being a draw.
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CHAPTER 6

Discussion

The thesis primarily consists of two parts: the adaption of the algorithm by Vigo et
al., and the tuning phase. This chapter includes a discussion of both.

6.1 Adaption of algorithm

The algorithm was originally developed to deal with the packing problem, but due to
the additional structure of the VRPTW some parts of the algorithm can be changed.

The solution has a fixed geographical distribution of the customers and therefore
it is possible to refine the search algorithm. Rather than returning all k tuple of
customers it might be possible to return a significant smaller subset. It is important
to understand that reducing the number of customers reduces the size of the solution
space searched and thereby potentially decreases the effectiveness of the algorithm.

The basic idea therefore is to develop a trustworthy knock-out criterion rather
than spend a lot of computation time in determining a very selective set of potential
vehicles. The reason to reduce the number of customers returned is thus solely to
increase computational efficiency. It is therefore a trade-off between pruning the
set of vehicles iterated through versus identifying them. Depending on how well
one would be able to do this, such a knock-out criterion might lead to a significant
increase in computational efficiency.

Another simple adaption of the algorithm would be to use a solution’s total
distance as a hash value instead of the more artificial penalty-value. The packing
problem simply lacks the notion of distance and therefore it is clear that no such
thing could be done in the packing-setting. There is one behavior though that would
require special attention if one would chose to use total distance as a hash value; or
at least it would mean a breaking change.

Right now, any return from Case 2 of the search-algorithm returns penalty equal
to infinity thereby only allowing a single return from Case 2 as long as any return
from Case 2 is stored in the tabu list. Using the total distance as hash value, it is
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highly unlikely that two Case 2 solutions would return the same total distance. This
behavior would have to be hard coded, which should not pose any difficulties.

While this change would only provide a very small increase in computational
efficiency, the real value is that the code becomes simpler. It is way more natural
to consider total distance compared to the artificial penalty value depending on the
filling function, which we a priori know nothing about, albeit control.

Finally, the lower bound and the check if it is reached could be omitted. That is,
at least when running the Solomon instances this never gave rise to a termination
and therefore seems superfluous. Again, this would primarily serve to simplify the
code rather than having any noticeable impact on computational efficiency.

None of these changes have been implemented due to time restrictions. Despite
the time required to implement the above is probably not too extensive the value
added, as argued, is mostly in simplicity of the code. As the primary focus of this
thesis was to investigate whether or not adapting the algorithm to the VRPTW-
setting is fruitful at all, it was chosen to spend the time pursuing this matter.

6.2 Tuning phase

Despite the above tuning being done to the best of our knowledge within the time
frame of this thesis a much more rigorous analysis is possible. Nevertheless there
are some elements of the above analysis that the author believes would transplant
to a more thorough analysis. It is the purpose of this section to highlight what these
elements are and how a (more) rigorous analysis could be performed.

We have already described the close relation between the filling function and
d_max serving as a correction measure as depicted in Figure 3.1. In other words, the
magnitude of d_max depends on how well we are able to determine a filling function
for the types of problems we wish to consider. As a consequence, any analysis would
have to start by determining what filling function to use before tuning d_max, or, at
very least, it should be done simultaneously.

In the previous section, Section 5.1.2, we also concluded that a strong correlation
between d_max, k_max, and l_max exists. This implies that even a full-scale rigorous
analysis would have to keep the same order of tuning as used in the above.

We have used a mere four data sets to reach our conclusion and not even used
any kind of statistical methods. The gain from using more data sets without apply-
ing some kind of statistical tools would be negligible as we have already used our
gut feeling to reach the conclusions due to data complexity. Adding even more data
would simply make the situation less transparent and make it even more incompre-
hensible for the human mind. Nevertheless the lack of proper statistical methods in
the above implies that we have very little feeling of the level of significance at which
the conclusions holds.

Having determined that the order of analysis in the above would carry over to
a in-depth analysis we turn our attention to how to perform such one of the filling
function.

The filling function’s purpose is to divide the vehicles into two classes: emptiable
and non-emptiable. There exists an abundance of methods to perform such an
analysis of which the author only knows a fraction. The field of such analyses is
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called statistical learning or machine learning.1 One of the premier examples are
neural networks, while others include linear discriminant analysis and the probit
model (the latter known from econometrics). An in-depth discussion of statistical
learning is found in [10].

The basic idea of all is to feed a computer with a vast amount of configurations
where the question of interest has already been decided. Using our algorithm and
the Solomon instances as an example this would correspond to parsing solutions
with a target vehicle and a 0/1-variable indicating whether the target vehicle was
successfully emptied or not. Note, that the data parsed would include intrinsic as
well as extrinsic factors, that is complete information. There is no need to identify
any specific parameters such as we have done in the analysis at hand nor to trim
the data set in any way. The very idea behind machine learning algorithms are,
that they will adjust the weights of all the information and thereby decide what is
significant and what is not. The weights can only be properly determined if the
data parsed is big and one approach might be to use half the Solomon instances for
tuning and the other half for testing.

The tuning of the search algorithm has a different nature. It is not about defining
two groups, but rather about optimizing a function of multiple variables under vari-
ous constraints. These variables themselves are different in nature. For instance the
solution never worsens as we increase l_max, but computation time increases and it
is the task of the analysis to determine when the quality of the solution begins to
flatten compared to the extra computation time.

In popular terms, one can think of this as a everywhere positive“derivative”of the
solution quality with respect to l_max and it is further clear that this derivative must
move closer and closer to zero. If d_max becomes very large then the diversification
process is never entered, which most likely leads to worse solutions. Hence the
“derivative” with respect to d_max is at first positive, but then turns negative. For
k_max the situation is undecided, but certainly of interest.

This also leads to a different kind of statistical methods used in the analysis. The
relevant question assemble more conventional hypothesis testing such as testing for
“there is no difference in performance for d_max=3 and d_max=4” closely and are as
such treated in any introductory statistics book, confer [11]. With more time on our
hands one would run the algorithm on a larger number of data sets as well as for a
larger number of potential parameter values. The above analysis gives a ball-park
figure of what ranges to consider.

Finally, one important aspect of the tuning was skipped entirely in our analysis,
namely the inner solver. In general there are three possible configurations to to
consider:

1. an exact method,

2. a heuristic and if so which,

3. an exact method for small numbers of customers, a heuristic for large, and a
value where to change between the two.

Note, that to begin with it is less important which exact method is chosen as
this only affects computation time. The performance (without computation time as
a factor) remains the same for all exact methods and as the number of customers

1As is often the case in science, the two fields have different origin, but as they were better
understood and developed their differences became minute.
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considered in the sub-instances usually is rather small the running time of the exact
method is a minor factor.

If one uses a heuristic—as we have done—the situation is more complex. Different
heuristics might very well return different solution for a given sub-instance and
therefore affect performance of the algorithm greatly.

The third and composite option seems interesting. The value for which to change
between an exact and a heuristic approach should be based on the computation time
of the exact method. Say this turns out to be 15 customers. This would allow us to
pick a heuristic that performed well in the range of 15 to 30 customers or so instead
of the whole interval from two to 30. One could even take the idea one step further
and introduce different heuristics for different intervals.

If more time was available we would have proceeded as follows. A rather simple
heuristic was used here and a natural first step would be to compare it to one or
two state-of-the-art heuristics and one exact method.
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CHAPTER 7

Conclusions

In this thesis we have concerned ourselves with adapting a bin-packaging algorithm
by Vigo et al. [2] to the VRPTW. The algorithm was successfully adapted and
various aspects of the algorithm were explained. Further, some additional tuning of
the algorithm is possible due to the additional structure of the VRPTW-problem
compared to the BPP. These were outlined and for some part implemented.

The search algorithm relies heavily on an inner solver and in this thesis we chose a
very simple heuristic originally proposed by Solomon [6] in 1987, albeit any heuristic
or exact algorithm would do the job. This was done for many reasons with the two
dominant being that the Solomon heuristic was quick to implement and that Vigo
et al. were able to find good solutions using even simple heuristics.

In this thesis we did not investigate the results of using different inner solvers
and instead a discussion of this is offered in Section 6.2.

Another crucial component of the algorithm is the filling function choosing the
vehicle, which is tried to be emptied. We identified some characteristics we thought
would enable us to predict whether a vehicle would be easy or difficult to empty.
It is this prediction aspect that is of tremendous importance. A good prediction
routine ensures that we focus our energy on trying to empty the right vehicles, which
increases the effectiveness—performance as well computation time—tremendously.
Having identified the factors the filling function was tuned using basic statistical
intuition.

Thereafter the search algorithm itself was tuned. This includes parameters such
as how we wish to diversify the tabu search and how many iterations we wish to do.
The parameters of the search algorithm do not have a simple interpretation and a
more rigorous analysis of the algorithm in its entirety could try to investigate this
area more thoroughly.

An extensive discussion of the tuning phase—both a justification of the steps
taken as well as suggestions for improvement and further research—has been done.

After these simple tuning measures it is natural to ask how all this performs?
Is it worth spending additional time pursuing this algorithm? And can one say
anything about that already?
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In order to quantify this, performance tests on the Solomon instances were per-
formed and compared to the best known solutions. In addition—to test our tuning
procedures of the filling function—the results were also compared to solutions found
using Vigo’s original filling function. Throughout the thesis it was repeatedly argued
that the filling function is a, if not the, key component of the search algorithm. This
point was highlighted by the significantly better results of the tuned filling func-
tion we found compared to the original filling function by Vigo et al. This should
not be confused with a criticism of the work of Vigo et al. as their filling function
was developed for a rather different purpose, but it clearly shows that determining
promising target vehicles is imperative.

This is all good, but how close does the algorithm get to the state-of-the-art
results? Unfortunately, not very close. On average 1.5 additional vehicles are used
corresponding to an increase of about 20 %. The total distance found by our al-
gorithm is about twice as long as the best known solutions. One should keep in
mind though, that the primary objective function was the minimize the number of
vehicles and not the total distance. With these being the numbers how should they
be interpreted? We quote Vigo et al.

Although very simple inner heuristics can already provide good final so-
lutions, tuned versions of the TSpack using effective heuristics proved to
be very effective for 2BP and 3BP, often finding state-of-the-art results.

Hence it should be expected that the algorithm is not able to find the best known
solutions with a very simple inner solver. It is difficult to say what Vigo et al. mean
by “good final solutions,” but the ones found by here shows that the idea of the
algorithm can be used to attack VRPTW instances.

The path for future research is therefore clear. Implement a state-of-the-art
heuristic as an inner solver and/or experiment with using an exact method. Then
find a better filling function using modern and rigorous methods to increase the
accuracy of the prediction of the target vehicles.
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APPENDIX A

Source Code

This chapter includes the source code from some of the key classes of the program.
These are depicted in a class diagram, see Figure 4.1. The complete source code is
a couple of thousand lines even for the key classes and is therefore not listed in its
entirety. The most interesting features from the most interesting classes are listed
below (API-documentation removed to save space), while the complete source code
can be found at http://baltzersen.info/vrp.php.

This chapter is useful for getting a taste of how the code looks, but the interested
reader wishing to understand the code in detail is strongly advised to load the
source code using an IDE such as Eclipse, which will make the API-documentation
available.

A.1 TunedFillingFunction class

package model.fillingFunction;
import java.util.List;

public class TunedFillingFunction extends AbstractFillingFunction
{
public TunedFillingFunction (Customers customers)
{
super(customers);

}

@Override
public double calculate (List<Integer> customersVisiting,
int numbersOfCustomersVisiting, List<Double> arrivalTimes,
int capacityUsed)

{
double a_1 = capacityUsed / customers.getTotalDemand();
// subtract 1 to adjust for depot.
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double a_2 = numbersOfCustomersVisiting - 1;
double a_3 = customers.getNumberOfCustomers() - 1;
double fillingFunction = a_1 - a_2 / a_3;

double arrivalTimeFactor = 1.0;
double avrArrivalTime = 0.0;
double t_1;
double t_2;

double costFactor = 1.0;
double maxDistance = 0.0;
double d;

for (int i = 0; i < numbersOfCustomersVisiting - 1; i++)
{
t_1 = arrivalTimes.get(i);
t_2 = arrivalTimes.get(i + 1);

arrivalTimeFactor *= (t_2 - t_1);
avrArrivalTime += t_1;
d = customers.Distance(customersVisiting.get(i),
customersVisiting.get(i + 1));

costFactor *= d;

if (d > maxDistance)
maxDistance = d;

}
avrArrivalTime = (avrArrivalTime +
arrivalTimes.get(numbersOfCustomersVisiting - 1))
/ numbersOfCustomersVisiting;

return arrivalTimeFactor + fillingFunction + avrArrivalTime + maxDistance;
}

@Override
public String toString ()
{
return "TunedFillingFunction";

}
}

A.2 SolomonHeuristic class

package model.innerSolver;

import java.util.LinkedList;

public class SolomonHeuristic extends AbstractInnerSolver
{
private double alpha_1 = 0.5;
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A.2 SolomonHeuristic class

private double alpha_2 = 1.0 - alpha_1;

public SolomonHeuristic (Customers customers, int capacity,
AbstractFillingFunction fillingFunction)

{
super(customers, capacity, fillingFunction);

}

public SolomonHeuristic (Customers customers, int capacity,
AbstractFillingFunction fillingFunction, double alpha_1, double alpha_2)

{
super(customers, capacity, fillingFunction);

if (alpha_1 + alpha_2 != 1 || alpha_1 < 0 || alpha_2 < 0)
throw new IllegalArgumentException(
"Both alpha_1 and alpha_2 need to be positive and their sum has to be 1.
They were; " + alpha_1 + "and " + alpha_2);

this.alpha_1 = alpha_1;
this.alpha_2 = alpha_2;

}

@Override
public Solution GetInitialSolution ()
{
return GetSolution(customers.getListOfCustomers());

}

private int[] findOptimalCustomer (List<Integer> workList, Vehicle vehicle)
{
int workSize = workList.size();
Object[][] opt = new Object[workSize][3];

int counter = 0;
double d_optimal = Double.MAX_VALUE;

// Finds optimal index for a given customer and remembers the weighted average.
for (int customer : workList)
{
d_optimal = Double.MAX_VALUE;
int index_optimal = 0;
for (int index = 1; index <= vehicle.getNumbersOfCustomersVisiting(); index++)
{
if (!vehicle.canAssignCustomer(customer, index))
continue;

double d = alpha_1 * vehicle.getDelay(customer, index) + alpha_2
* vehicle.getDetourCost(customer, index);

if (d < d_optimal)
{
d_optimal = d;
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index_optimal = index;
}

}
if (d_optimal == Double.MAX_VALUE)
continue;

opt[counter][0] = customer;
opt[counter][1] = index_optimal;
opt[counter][2] = d_optimal;
counter++;

}
return secondCriterion(opt, workSize);

}

private int[] secondCriterion (Object[][] optimals, int workSize)
{
int[] optimalContainer = new int[2];

double optimalDistance = Double.MAX_VALUE;
int optimalCustomer = 0;

for (int i = 0; i < workSize; i++)
{
Double customerSpecificOptimum = optimals[i][2] != null ?
(Double) optimals[i][2] : Double.MAX_VALUE;

if (customerSpecificOptimum < optimalDistance)
{
optimalDistance = customerSpecificOptimum;
optimalCustomer = i;

}
}
if (optimalDistance == Double.MAX_VALUE)
return null;

for (int k = 0; k < 2; k++)
optimalContainer[k] = (Integer) optimals[optimalCustomer][k];

return optimalContainer;
}

private boolean placeOptimalCustomer (List<Integer> workList, Vehicle vehicle)
{
int[] optimalContainer = findOptimalCustomer(workList, vehicle);
if (optimalContainer == null)
return false;

if ((Integer) optimalContainer[0] != -1)
placeCustomer(vehicle, optimalContainer[0], optimalContainer[1], workList);
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return true;
}

private void placeCustomer (Vehicle vehicle, int customer, int index,
List<Integer> workList)

{
vehicle.AssignCustomer(customer, index);
workList.remove((Object) customer);

}

@Override
public Solution GetSolution (List<Integer> workList)
{
workList = new LinkedList<Integer>(workList);

if (workList.get(0) == 0)
workList.remove(0); // remove depot.

if (workList.contains((Integer) 0))
throw new IllegalArgumentException(
"Depot is contained multiple times in worklist");

double distance_max = 0.0;
int seedCustomer = 0;
for (int customer : workList)
{
if (customers.Distance(customer) > distance_max)
{
seedCustomer = customer;
distance_max = customers.Distance(customer);

}
}
Vehicle vehicle = new Vehicle(capacity, customers, fillingFunction);
placeCustomer(vehicle, seedCustomer, 1, workList);

List<Vehicle> vehicles = new LinkedList<Vehicle>();
if(workList.isEmpty())
vehicles.add(vehicle);

while (!workList.isEmpty())
{
while (placeOptimalCustomer(workList, vehicle))
{
}
vehicles.add(vehicle);
vehicle = new Vehicle(capacity, customers, fillingFunction);

}
return new Solution(vehicles.toArray(new Vehicle[0]),
customers.getNumberOfCustomers());

}
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}

A.3 TabuListContainer class

package model;

public class TabuListContainer
{
private TabuList[] container;
private int maxNeighborhoodSize;

public TabuListContainer (int length, int maxNeighborhoodSize)
{
container = new TabuList[maxNeighborhoodSize];
this.maxNeighborhoodSize = maxNeighborhoodSize;
for (int j = 0; j < maxNeighborhoodSize; j++)
container[j] = new TabuList(length);

}

public void resetAllTabuList ()
{
for (TabuList tl : container)
tl.reset();

}

public void addMove (double value, int neighborhood)
{
illegalArgument(neighborhood);
container[neighborhood - 1].addMove(value);

}

public boolean contains (double value, int neighborhood)
{
illegalArgument(neighborhood);
return container[neighborhood - 1].contains(value);

}

private void illegalArgument (int neighborhood)
{
if (neighborhood > maxNeighborhoodSize)
throw new IllegalArgumentException("neighborhood must be smaller than "
+ maxNeighborhoodSize + ", but was " + neighborhood);

}

@Override
public String toString ()
{
StringBuilder sb = new StringBuilder();
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for (int i = 0; i < maxNeighborhoodSize; i++)
sb.append("tabu list " + (i+1) + ": " + container[i].toString() + "\n");

return sb.toString();
}

}

A.4 TabuList class

package model;

public class TabuList
{
private double[] tabuList;
private int length;
private int pointer = 0;

public TabuList (int length)
{
tabuList = new double[length];
this.length = length;

}

public void reset ()
{
for (int j = 0; j < length; j++)
tabuList[j] = 0.0;

}

public void addMove (double value)
{
if (contains(value))
throw new IllegalArgumentException("TabuList for already contains the value: "
+ value);

tabuList[pointer] = value;
pointer = (pointer + 1) % length;

}

public boolean contains (double value)
{
for (int i = 0; i < length; i++)
if (tabuList[i] == value)
return true;

return false;
}

@Override
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public String toString ()
{
String s = "{";
for (Double value : tabuList)
s += value.toString() + ", ";

return s = s.substring(0, s.length() - 2) + "}";
}

}
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APPENDIX B

Data

This chapter contains the data used in the thesis not already giving in the main
text.

B.1 Significant factors of filling function

CPU V Distance a1 a2 a3 a4 a5 a6 a7 a8 a9

rc108 188 13 1799.65 0.25 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.00
rc108 189 13 1799.65 0.20 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.00
rc108 756 13 1801.26 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25
rc108 757 13 1801.26 0.00 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.20
rc108 153 13 1802.82 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.00 0.17
rc108 154 13 1802.82 0.20 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.20
rc108 149 13 1810.01 0.20 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.20
rc108 149 13 1810.01 0.17 0.00 0.17 0.17 0.17 0.17 0.00 0.00 0.17
rc108 947 13 1818.20 0.00 0.20 0.00 0.20 0.00 0.20 0.20 0.00 0.20
rc108 130 13 1818.97 0.33 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00
rc108 130 13 1818.97 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.00
rc108 133 13 1818.97 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33
rc108 133 13 1818.97 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.25
rc108 134 13 1818.97 0.25 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.00
rc108 135 13 1818.97 0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
rc108 234 13 1820.95 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00
rc108 196 13 1822.78 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
rc108 196 13 1822.78 0.33 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.00
rc108 197 13 1822.78 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rc108 197 13 1822.78 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
rc108 441 13 1826.08 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.00 0.00
rc108 441 13 1826.08 0.00 0.25 0.25 0.25 0.00 0.25 0.00 0.00 0.00
rc108 155 13 1830.85 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
rc108 155 13 1830.85 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.00
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rc108 155 13 1830.85 0.25 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.00
rc108 156 13 1830.85 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00
rc108 156 13 1830.85 0.33 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00
rc108 156 13 1830.85 0.25 0.00 0.25 0.00 0.00 0.25 0.25 0.00 0.00
rc108 156 13 1830.85 0.25 0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.00
rc108 156 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.20 0.20 0.00 0.00
rc108 156 13 1830.85 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
rc108 156 13 1830.85 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00
rc108 156 13 1830.85 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00
rc108 156 13 1830.85 0.25 0.00 0.25 0.25 0.00 0.00 0.00 0.25 0.00
rc108 156 13 1830.85 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00
rc108 156 13 1830.85 0.25 0.00 0.25 0.00 0.00 0.25 0.00 0.25 0.00
rc108 156 13 1830.85 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.25 0.00
rc108 156 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.20 0.00 0.20 0.00
rc108 156 13 1830.85 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00
rc108 156 13 1830.85 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.25 0.00
rc108 156 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.00 0.20 0.20 0.00
rc108 156 13 1830.85 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33
rc108 156 13 1830.85 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.25
rc108 156 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.00 0.20 0.00 0.20
rc108 157 13 1830.85 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.33
rc108 157 13 1830.85 0.25 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.25
rc108 157 13 1830.85 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.33
rc108 157 13 1830.85 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.25
rc108 157 13 1830.85 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.25
rc108 157 13 1830.85 0.20 0.00 0.20 0.00 0.00 0.20 0.20 0.00 0.20
rc108 157 13 1830.85 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.00 0.20
rc108 157 13 1830.85 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.25
rc108 158 13 1830.85 0.33 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00
rc108 158 13 1830.85 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.00
rc108 158 13 1830.85 0.20 0.00 0.20 0.00 0.00 0.20 0.20 0.20 0.00
rc108 158 13 1830.85 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.20 0.00
rc108 158 13 1830.85 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
rc108 158 13 1830.85 0.25 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25
rc108 158 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.20 0.00 0.00 0.20
rc108 158 13 1830.85 0.20 0.00 0.20 0.20 0.00 0.00 0.00 0.20 0.20
rc108 158 13 1830.85 0.20 0.00 0.20 0.00 0.00 0.20 0.00 0.20 0.20
rc108 158 13 1830.85 0.20 0.00 0.00 0.20 0.00 0.20 0.00 0.20 0.20
rc108 158 13 1830.85 0.20 0.00 0.20 0.00 0.00 0.00 0.20 0.20 0.20
rc108 158 13 1830.85 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.20
rc108 159 13 1830.85 0.25 0.00 0.25 0.25 0.00 0.25 0.00 0.00 0.00
rc108 159 13 1830.85 0.20 0.00 0.00 0.20 0.00 0.00 0.20 0.20 0.20
rc108 159 13 1830.85 0.17 0.00 0.00 0.17 0.00 0.17 0.17 0.17 0.17
rc108 159 13 1830.85 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.14 0.14
rc108 249 13 1834.67 0.00 0.20 0.00 0.00 0.20 0.20 0.00 0.20 0.20
rc108 249 13 1834.67 0.00 0.17 0.17 0.00 0.17 0.17 0.00 0.17 0.17
rc108 686 13 1835.49 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25
rc108 136 13 1837.79 0.33 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
rc108 137 13 1837.79 0.25 0.00 0.25 0.00 0.00 0.00 0.25 0.25 0.00
rc108 138 13 1837.79 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33
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B.1 Significant factors of filling function

rc108 138 13 1837.79 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25
rc108 139 13 1837.79 0.25 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25
rc108 139 13 1837.79 0.25 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25
rc108 252 13 1838.84 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.33
rc108 252 13 1838.84 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25
rc108 276 13 1840.59 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.33
rc108 653 13 1841.65 0.00 0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00
rc108 71 13 1842.17 0.20 0.20 0.20 0.20 0.00 0.00 0.20 0.00 0.00
rc108 71 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.20 0.20 0.00 0.00
rc108 71 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.00 0.20 0.00 0.20
rc108 72 13 1842.17 0.20 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.20
rc108 72 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.20 0.00 0.00 0.20
rc108 72 13 1842.17 0.17 0.17 0.00 0.17 0.00 0.00 0.17 0.17 0.17
rc108 72 13 1842.17 0.17 0.17 0.00 0.00 0.00 0.17 0.17 0.17 0.17
rc108 72 13 1842.17 0.12 0.12 0.12 0.12 0.00 0.12 0.12 0.12 0.12
rc108 73 13 1842.17 0.14 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.00
rc108 73 13 1842.17 0.14 0.14 0.14 0.14 0.00 0.14 0.00 0.14 0.14
rc108 73 13 1842.17 0.14 0.14 0.14 0.14 0.00 0.00 0.14 0.14 0.14
rc108 73 13 1842.17 0.14 0.14 0.14 0.00 0.00 0.14 0.14 0.14 0.14
rc108 74 13 1842.17 0.14 0.14 0.00 0.14 0.00 0.14 0.14 0.14 0.14
rc108 115 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.25 0.25
rc108 117 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.25
rc108 184 13 1842.17 0.33 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00
rc108 184 13 1842.17 0.25 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.00
rc108 184 13 1842.17 0.25 0.25 0.00 0.25 0.00 0.00 0.25 0.00 0.00
rc108 184 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.00 0.17 0.17 0.00
rc108 185 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.25 0.25 0.00 0.00
rc108 185 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.20 0.20 0.00 0.00
rc108 185 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.17 0.17 0.00 0.00
rc108 185 13 1842.17 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00
rc108 185 13 1842.17 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.00
rc108 185 13 1842.17 0.20 0.20 0.20 0.20 0.00 0.00 0.00 0.20 0.00
rc108 185 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.25 0.00
rc108 185 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.00
rc108 185 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00
rc108 185 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.17 0.00 0.17 0.00
rc108 185 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.00 0.20 0.20 0.00
rc108 185 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.00 0.20 0.00 0.20
rc108 185 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.00 0.17 0.00 0.17
rc108 185 13 1842.17 0.17 0.17 0.17 0.00 0.00 0.17 0.17 0.00 0.17
rc108 186 13 1842.17 0.33 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00
rc108 186 13 1842.17 0.25 0.25 0.25 0.00 0.00 0.25 0.00 0.00 0.00
rc108 186 13 1842.17 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.25 0.00
rc108 186 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.00
rc108 186 13 1842.17 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.25
rc108 186 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.17 0.00 0.00 0.17
rc108 186 13 1842.17 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.00 0.20
rc108 186 13 1842.17 0.14 0.14 0.14 0.14 0.00 0.14 0.14 0.00 0.14
rc108 187 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.00
rc108 187 13 1842.17 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.20 0.00
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B Data

rc108 187 13 1842.17 0.17 0.17 0.17 0.00 0.00 0.17 0.17 0.17 0.00
rc108 187 13 1842.17 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.25
rc108 187 13 1842.17 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.25
rc108 187 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.00 0.20
rc108 187 13 1842.17 0.17 0.17 0.00 0.17 0.00 0.17 0.17 0.00 0.17
rc108 187 13 1842.17 0.17 0.17 0.17 0.00 0.00 0.17 0.00 0.17 0.17
rc108 187 13 1842.17 0.17 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.17
rc108 188 13 1842.17 0.17 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.00
rc108 188 13 1842.17 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.33
rc108 188 13 1842.17 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20
rc108 188 13 1842.17 0.20 0.20 0.00 0.20 0.00 0.00 0.00 0.20 0.20
rc108 188 13 1842.17 0.17 0.17 0.17 0.17 0.00 0.00 0.00 0.17 0.17
rc108 188 13 1842.17 0.20 0.20 0.00 0.00 0.00 0.20 0.00 0.20 0.20
rc108 188 13 1842.17 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20
rc108 188 13 1842.17 0.17 0.17 0.17 0.00 0.00 0.00 0.17 0.17 0.17
rc108 189 13 1842.17 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.00
rc108 189 13 1842.17 0.20 0.20 0.20 0.20 0.00 0.20 0.00 0.00 0.00
rc108 198 13 1844.00 0.20 0.20 0.20 0.00 0.20 0.20 0.00 0.00 0.00
rc108 199 13 1844.00 0.25 0.25 0.00 0.00 0.25 0.00 0.00 0.00 0.25
rc108 199 13 1844.00 0.20 0.20 0.20 0.00 0.20 0.00 0.00 0.00 0.20
rc108 201 13 1844.00 0.25 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.00
rc108 748 13 1844.08 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.20 0.20
rc108 849 13 1844.08 0.00 0.20 0.20 0.20 0.00 0.20 0.00 0.20 0.00
rc108 482 13 1845.41 0.00 0.17 0.00 0.17 0.17 0.17 0.00 0.17 0.17
rc108 482 13 1845.41 0.00 0.14 0.14 0.14 0.14 0.14 0.00 0.14 0.14
rc108 199 13 1848.25 0.00 0.20 0.00 0.20 0.20 0.20 0.00 0.00 0.20
rc108 206 13 1848.25 0.00 0.17 0.17 0.17 0.17 0.17 0.00 0.00 0.17
rc108 128 13 1852.11 0.14 0.00 0.00 0.14 0.14 0.14 0.14 0.14 0.14
rc108 129 13 1852.11 0.12 0.00 0.12 0.12 0.12 0.12 0.12 0.12 0.12
rc108 179 13 1854.15 0.25 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.25
rc108 180 13 1854.15 0.33 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.00
rc108 180 13 1854.15 0.17 0.00 0.17 0.17 0.00 0.17 0.17 0.17 0.00
rc108 180 13 1854.15 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33
rc108 180 13 1854.15 0.17 0.00 0.17 0.17 0.00 0.00 0.17 0.17 0.17
rc108 181 13 1854.15 0.17 0.00 0.17 0.17 0.00 0.17 0.00 0.17 0.17
rc108 182 13 1854.15 0.17 0.00 0.17 0.17 0.00 0.17 0.17 0.00 0.17
rc108 182 13 1854.15 0.17 0.00 0.17 0.00 0.00 0.17 0.17 0.17 0.17
rc108 774 14 1857.36 0.00 0.20 0.00 0.20 0.00 0.20 0.20 0.20 0.00
rc108 777 14 1857.36 0.00 0.17 0.17 0.17 0.00 0.17 0.17 0.17 0.00
rc108 778 14 1857.36 0.00 0.20 0.00 0.20 0.00 0.00 0.20 0.20 0.20
rc108 779 14 1857.36 0.00 0.17 0.17 0.17 0.00 0.00 0.17 0.17 0.17
rc108 991 14 1858.35 0.00 0.17 0.17 0.00 0.00 0.17 0.17 0.17 0.17
rc108 534 13 1859.81 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.33 0.00
rc108 534 13 1859.81 0.00 0.25 0.25 0.00 0.00 0.00 0.25 0.25 0.00
rc108 617 13 1859.81 0.00 0.25 0.25 0.00 0.00 0.25 0.25 0.00 0.00
rc108 665 13 1859.81 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00
rc108 1086 13 1859.81 0.00 0.33 0.33 0.00 0.00 0.00 0.33 0.00 0.00
rc108 760 13 1859.97 0.00 0.20 0.00 0.00 0.20 0.20 0.20 0.00 0.20
rc108 764 13 1859.97 0.00 0.17 0.17 0.00 0.17 0.17 0.17 0.00 0.17
rc108 928 13 1859.97 0.00 0.14 0.14 0.00 0.14 0.14 0.14 0.14 0.14
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B.1 Significant factors of filling function

rc108 929 13 1859.97 0.00 0.17 0.00 0.00 0.17 0.17 0.17 0.17 0.17
rc108 317 13 1865.12 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00
rc108 317 13 1865.12 0.00 0.25 0.25 0.00 0.25 0.00 0.00 0.25 0.00
rc108 278 13 1866.11 0.00 0.25 0.00 0.00 0.25 0.00 0.25 0.25 0.00
rc108 279 13 1866.11 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25 0.00
rc108 279 13 1866.11 0.00 0.20 0.20 0.20 0.20 0.00 0.00 0.20 0.00
rc108 282 13 1866.11 0.00 0.20 0.20 0.00 0.20 0.00 0.20 0.20 0.00
rc108 957 14 1866.55 0.00 0.20 0.20 0.20 0.20 0.00 0.20 0.00 0.00
rc108 958 14 1866.55 0.00 0.25 0.00 0.25 0.25 0.00 0.25 0.00 0.00
rc108 292 13 1867.64 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.33 0.00
rc108 292 13 1867.64 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.25 0.00
rc108 295 13 1867.64 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.00 0.25
rc108 122 13 1868.25 0.25 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00
rc108 123 13 1868.25 0.33 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.00
rc108 483 13 1868.44 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.50
rc108 165 13 1868.75 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
rc108 167 13 1868.75 0.33 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00
rc108 191 13 1868.83 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00
rc108 191 13 1868.83 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.33 0.00
rc108 113 14 1869.28 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.00
rc108 113 14 1869.28 0.00 0.00 0.20 0.00 0.20 0.20 0.20 0.20 0.00
rc108 132 13 1870.01 0.14 0.14 0.00 0.14 0.14 0.14 0.14 0.14 0.00
rc108 132 13 1870.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.00
rc108 132 13 1870.01 0.14 0.14 0.00 0.14 0.14 0.14 0.00 0.14 0.14
rc108 132 13 1870.01 0.12 0.12 0.12 0.12 0.12 0.12 0.00 0.12 0.12
rc108 132 13 1870.01 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.14
rc108 132 13 1870.01 0.12 0.12 0.12 0.12 0.12 0.00 0.12 0.12 0.12
rc108 132 13 1870.01 0.14 0.14 0.00 0.00 0.14 0.14 0.14 0.14 0.14
rc108 132 13 1870.01 0.12 0.12 0.12 0.00 0.12 0.12 0.12 0.12 0.12
rc108 145 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.17 0.17 0.00 0.00
rc108 145 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.00
rc108 146 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.17 0.00 0.00 0.17
rc108 146 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.00 0.17 0.00 0.17
rc108 146 13 1870.01 0.17 0.17 0.00 0.00 0.17 0.17 0.17 0.00 0.17
rc108 147 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.00 0.14
rc108 147 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.00 0.14 0.00 0.14
rc108 147 13 1870.01 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.00 0.14
rc108 178 13 1870.01 0.17 0.17 0.17 0.17 0.17 0.17 0.00 0.00 0.00
rc108 179 13 1870.01 0.20 0.20 0.00 0.20 0.20 0.00 0.20 0.00 0.00
rc108 179 13 1870.01 0.17 0.17 0.17 0.17 0.17 0.00 0.17 0.00 0.00
rc108 179 13 1870.01 0.20 0.20 0.00 0.00 0.20 0.20 0.20 0.00 0.00
rc108 179 13 1870.01 0.17 0.17 0.17 0.00 0.17 0.17 0.17 0.00 0.00
rc108 179 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.17 0.00 0.17 0.00
rc108 179 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.14 0.00
rc108 179 13 1870.01 0.17 0.17 0.17 0.00 0.17 0.17 0.00 0.00 0.17
rc108 179 13 1870.01 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.00 0.20
rc108 179 13 1870.01 0.17 0.17 0.17 0.00 0.17 0.00 0.17 0.00 0.17
rc108 180 13 1870.01 0.20 0.20 0.00 0.20 0.20 0.20 0.00 0.00 0.00
rc108 180 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.00 0.14 0.14 0.00
rc108 180 13 1870.01 0.17 0.17 0.00 0.00 0.17 0.17 0.17 0.17 0.00
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B Data

rc108 180 13 1870.01 0.20 0.20 0.00 0.20 0.20 0.00 0.00 0.00 0.20
rc108 180 13 1870.01 0.17 0.17 0.17 0.17 0.17 0.00 0.00 0.00 0.17
rc108 180 13 1870.01 0.20 0.20 0.00 0.00 0.20 0.20 0.00 0.00 0.20
rc108 181 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.00 0.17 0.17 0.00
rc108 181 13 1870.01 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.14 0.00
rc108 181 13 1870.01 0.14 0.14 0.14 0.14 0.14 0.00 0.00 0.14 0.14
rc108 181 13 1870.01 0.17 0.17 0.00 0.00 0.17 0.17 0.00 0.17 0.17
rc108 181 13 1870.01 0.14 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14
rc108 181 13 1870.01 0.17 0.17 0.00 0.00 0.17 0.00 0.17 0.17 0.17
rc108 181 13 1870.01 0.14 0.14 0.14 0.00 0.14 0.00 0.14 0.14 0.14
rc108 182 13 1870.01 0.17 0.17 0.00 0.17 0.17 0.00 0.00 0.17 0.17
rc108 169 13 1870.51 0.20 0.20 0.20 0.20 0.20 0.00 0.00 0.00 0.00
rc108 600 13 1871.22 0.00 0.17 0.00 0.17 0.17 0.17 0.17 0.00 0.17
rc108 603 13 1871.22 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.14
rc108 149 13 1871.98 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00
rc108 150 13 1871.98 0.00 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00
rc108 307 13 1873.39 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.33
rc108 307 13 1873.39 0.00 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.25
rc108 136 13 1873.59 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00
rc108 136 13 1873.59 0.25 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.00
rc108 137 13 1873.59 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rc108 137 13 1873.59 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
rc108 558 14 1874.66 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.00
rc108 560 14 1874.66 0.00 0.17 0.00 0.17 0.17 0.17 0.17 0.17 0.00
rc108 892 14 1874.66 0.00 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
rc108 893 14 1874.66 0.00 0.14 0.00 0.14 0.14 0.14 0.14 0.14 0.14
rc108 781 13 1876.62 0.00 0.20 0.20 0.00 0.00 0.20 0.20 0.00 0.20
rc108 155 13 1877.17 0.20 0.00 0.00 0.20 0.20 0.00 0.20 0.00 0.20
rc108 167 13 1877.17 0.17 0.00 0.17 0.17 0.17 0.00 0.17 0.00 0.17
rc108 147 13 1877.63 0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00
rc108 152 13 1877.63 0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00
rc108 865 13 1877.99 0.00 0.20 0.00 0.20 0.20 0.00 0.20 0.00 0.20
rc108 886 13 1877.99 0.00 0.17 0.17 0.17 0.17 0.00 0.17 0.00 0.17
rc108 598 13 1881.51 0.00 0.25 0.25 0.00 0.25 0.25 0.00 0.00 0.00
rc108 605 13 1881.51 0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00 0.00
rc108 1181 13 1881.83 0.00 0.20 0.20 0.20 0.00 0.20 0.00 0.00 0.20
rc108 924 14 1882.95 0.00 0.20 0.00 0.20 0.20 0.00 0.20 0.20 0.00
rc108 924 14 1882.95 0.00 0.17 0.17 0.17 0.17 0.00 0.17 0.17 0.00
rc108 1012 13 1883.76 0.00 0.17 0.17 0.17 0.00 0.17 0.17 0.00 0.17
rc108 600 13 1883.8 0.00 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.17
rc108 600 13 1883.8 0.00 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.14
rc108 141 13 1884.77 0.17 0.00 0.00 0.17 0.17 0.00 0.17 0.17 0.17
rc108 141 13 1884.77 0.14 0.00 0.14 0.14 0.14 0.00 0.14 0.14 0.14
rc108 326 13 1885.89 0.00 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.20
rc108 326 13 1885.89 0.00 0.17 0.17 0.00 0.17 0.00 0.17 0.17 0.17
rc108 403 13 1886.97 0.20 0.20 0.00 0.00 0.20 0.20 0.00 0.20 0.00
rc108 403 13 1886.97 0.17 0.17 0.17 0.00 0.17 0.17 0.00 0.17 0.00
rc108 404 13 1886.97 0.20 0.20 0.00 0.20 0.20 0.00 0.00 0.20 0.00
rc108 404 13 1886.97 0.17 0.17 0.17 0.17 0.17 0.00 0.00 0.17 0.00
rc108 407 13 1886.97 0.17 0.17 0.17 0.00 0.17 0.00 0.17 0.17 0.00
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B.1 Significant factors of filling function

rc108 409 13 1886.97 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.00
rc108 409 13 1886.97 0.20 0.20 0.00 0.00 0.20 0.00 0.00 0.20 0.20
rc108 409 13 1886.97 0.17 0.17 0.17 0.00 0.17 0.00 0.00 0.17 0.17
rc108 332 13 1889.31 0.17 0.00 0.00 0.17 0.17 0.17 0.00 0.17 0.17
rc108 332 13 1889.31 0.14 0.00 0.14 0.14 0.14 0.14 0.00 0.14 0.14
rc108 156 13 1889.91 0.00 0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00
rc108 156 13 1889.91 0.00 0.25 0.00 0.00 0.25 0.25 0.25 0.00 0.00
rc108 156 13 1889.91 0.00 0.20 0.20 0.00 0.20 0.20 0.20 0.00 0.00
rc108 156 13 1889.91 0.00 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.25
rc108 156 13 1889.91 0.00 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.20
rc108 157 13 1889.91 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.00 0.25
rc108 157 13 1889.91 0.00 0.20 0.20 0.20 0.20 0.00 0.00 0.00 0.20
rc108 158 13 1889.91 0.00 0.20 0.20 0.20 0.20 0.20 0.00 0.00 0.00
rc108 283 13 1889.91 0.00 0.20 0.20 0.00 0.20 0.20 0.00 0.00 0.20
rc108 285 13 1889.91 0.00 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.25
rc108 581 13 1889.91 0.00 0.20 0.00 0.20 0.20 0.20 0.00 0.20 0.00
rc108 581 13 1889.91 0.00 0.17 0.17 0.17 0.17 0.17 0.00 0.17 0.00
rc108 586 13 1889.91 0.00 0.17 0.17 0.00 0.17 0.17 0.17 0.17 0.00
rc108 587 13 1889.91 0.00 0.20 0.00 0.00 0.20 0.20 0.20 0.20 0.00
rc108 588 13 1889.91 0.00 0.20 0.00 0.20 0.20 0.00 0.00 0.20 0.20
rc108 589 13 1889.91 0.00 0.17 0.17 0.17 0.17 0.00 0.00 0.17 0.17
rc108 105 14 1891.09 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00
rc108 207 14 1891.09 0.00 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.00
rc108 228 13 1891.27 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
rc108 416 13 1892.19 0.00 0.33 0.00 0.00 0.33 0.00 0.33 0.00 0.00
rc108 417 13 1892.19 0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00
rc108 248 13 1892.75 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
rc108 244 13 1896.74 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rc108 372 13 1896.74 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
rc108 121 13 1898.72 0.17 0.00 0.17 0.17 0.17 0.17 0.17 0.00 0.00
rc108 122 13 1898.72 0.20 0.00 0.00 0.20 0.20 0.20 0.20 0.00 0.00
rc108 123 13 1898.72 0.17 0.00 0.00 0.17 0.17 0.17 0.17 0.17 0.00
rc108 123 13 1898.72 0.14 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.00
rc108 459 13 1900.07 0.00 0.20 0.20 0.20 0.00 0.20 0.20 0.00 0.00
rc108 265 13 1900.19 0.00 0.33 0.33 0.00 0.00 0.33 0.00 0.00 0.00
rc108 601 13 1903.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25 0.25 0.00
rc108 601 13 1903.00 0.00 0.20 0.20 0.00 0.00 0.20 0.20 0.20 0.00
rc108 603 13 1903.00 0.00 0.20 0.00 0.00 0.00 0.20 0.20 0.20 0.20
rc108 141 13 1904.22 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.25
rc108 142 13 1904.22 0.00 0.20 0.20 0.00 0.20 0.00 0.00 0.20 0.20
rc108 742 14 1905.15 0.00 0.25 0.00 0.25 0.00 0.25 0.25 0.00 0.00
rc108 877 13 1907.66 0.00 0.17 0.17 0.17 0.17 0.17 0.17 0.00 0.00
rc108 880 13 1907.66 0.00 0.20 0.00 0.20 0.20 0.20 0.20 0.00 0.00
rc108 624 13 1908.79 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.25
rc108 107 13 1912.37 0.20 0.00 0.00 0.20 0.20 0.20 0.00 0.20 0.00
rc108 107 13 1912.37 0.17 0.00 0.17 0.17 0.17 0.17 0.00 0.17 0.00
rc108 107 13 1912.37 0.20 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.00
rc108 108 13 1912.37 0.20 0.00 0.00 0.20 0.20 0.00 0.20 0.20 0.00
rc108 108 13 1912.37 0.17 0.00 0.17 0.17 0.17 0.00 0.17 0.17 0.00
rc108 108 13 1912.37 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.17 0.00
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B Data

rc108 108 13 1912.37 0.20 0.00 0.00 0.20 0.20 0.00 0.00 0.20 0.20
rc108 108 13 1912.37 0.17 0.00 0.17 0.17 0.17 0.00 0.00 0.17 0.17
rc108 108 13 1912.37 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.17 0.17
rc108 109 13 1912.37 0.20 0.00 0.00 0.00 0.20 0.00 0.20 0.20 0.20
rc108 113 14 1912.73 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00
rc108 521 13 1913.23 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.20
rc108 1085 13 1913.23 0.00 0.17 0.17 0.17 0.00 0.17 0.00 0.17 0.17
rc108 1211 13 1913.23 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.25 0.25
rc108 1268 13 1913.23 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00
rc108 112 13 1913.72 0.14 0.14 0.00 0.14 0.14 0.14 0.14 0.00 0.14
rc108 112 13 1913.72 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.00 0.12
rc108 112 13 1913.72 0.12 0.12 0.00 0.12 0.12 0.12 0.12 0.12 0.12
rc108 112 13 1913.72 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
rc108 810 14 1913.95 0.00 0.25 0.00 0.00 0.00 0.25 0.25 0.00 0.25
rc108 110 13 1917.52 0.25 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.00
rc108 110 13 1917.52 0.25 0.00 0.00 0.00 0.25 0.00 0.25 0.00 0.25
rc108 111 13 1917.52 0.25 0.00 0.00 0.25 0.25 0.25 0.00 0.00 0.00
rc108 111 13 1917.52 0.20 0.00 0.20 0.20 0.20 0.00 0.20 0.00 0.00
rc108 111 13 1917.52 0.25 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.00
rc108 111 13 1917.52 0.20 0.00 0.20 0.00 0.20 0.20 0.20 0.00 0.00
rc108 111 13 1917.52 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.25
rc108 111 13 1917.52 0.25 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.25
rc108 111 13 1917.52 0.20 0.00 0.20 0.00 0.20 0.20 0.00 0.00 0.20
rc108 111 13 1917.52 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
rc108 112 13 1917.52 0.20 0.00 0.20 0.20 0.20 0.20 0.00 0.00 0.00
rc108 112 13 1917.52 0.20 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.20
rc108 137 13 1917.52 0.17 0.00 0.00 0.00 0.17 0.17 0.17 0.17 0.17
rc108 137 13 1917.52 0.14 0.00 0.14 0.00 0.14 0.14 0.14 0.14 0.14
rc108 143 13 1917.52 0.20 0.00 0.00 0.00 0.20 0.20 0.00 0.20 0.20
rc108 143 13 1917.52 0.17 0.00 0.17 0.00 0.17 0.17 0.00 0.17 0.17
rc108 285 13 1917.52 0.14 0.00 0.14 0.14 0.14 0.14 0.14 0.00 0.14
rc108 287 13 1917.52 0.17 0.00 0.00 0.17 0.17 0.17 0.17 0.00 0.17
rc108 96 13 1918.07 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.00
rc108 96 13 1918.07 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.25 0.00
rc108 103 13 1918.07 0.25 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.00
rc108 104 13 1918.07 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.00
rc108 104 13 1918.07 0.20 0.00 0.20 0.20 0.20 0.00 0.00 0.20 0.00
rc108 104 13 1918.07 0.25 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.00
rc108 104 13 1918.07 0.20 0.00 0.20 0.00 0.20 0.20 0.00 0.20 0.00
rc108 105 13 1918.07 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.20 0.00
rc108 105 13 1918.07 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.25 0.25
rc108 105 13 1918.07 0.20 0.00 0.20 0.00 0.20 0.00 0.00 0.20 0.20
rc108 118 13 1919.26 0.25 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00
rc108 118 13 1919.26 0.20 0.20 0.20 0.00 0.20 0.00 0.00 0.20 0.00
rc108 706 13 1920.10 0.00 0.17 0.00 0.17 0.17 0.00 0.17 0.17 0.17
rc108 707 13 1920.10 0.00 0.14 0.14 0.14 0.14 0.00 0.14 0.14 0.14
rc108 141 14 1920.50 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.33 0.00
rc108 143 14 1920.50 0.00 0.00 0.25 0.00 0.25 0.00 0.25 0.25 0.00
rc108 500 13 1920.52 0.00 0.25 0.25 0.25 0.00 0.00 0.25 0.00 0.00
rc108 540 13 1920.52 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.33
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B.1 Significant factors of filling function

rc108 541 13 1920.52 0.00 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.25
rc108 591 13 1920.52 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.33
rc108 647 13 1920.52 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.33 0.00
rc108 647 13 1920.52 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.25 0.00
rc108 709 13 1920.52 0.00 0.20 0.20 0.20 0.00 0.00 0.20 0.00 0.20
rc108 731 13 1920.52 0.00 0.20 0.20 0.20 0.00 0.00 0.20 0.20 0.00
rc108 732 13 1920.52 0.00 0.33 0.00 0.33 0.00 0.00 0.33 0.00 0.00
rc108 736 13 1920.52 0.00 0.25 0.00 0.25 0.00 0.00 0.25 0.25 0.00
rc108 1004 13 1920.52 0.00 0.25 0.00 0.25 0.00 0.00 0.25 0.00 0.25
rc108 556 13 1923.98 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.33
rc108 247 14 1924.99 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.50
rc108 248 14 1924.99 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.33
rc108 189 14 1925.64 0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.25 0.00
rc108 817 13 1926.75 0.00 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.20
rc108 818 13 1926.75 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.25 0.25
rc108 134 14 1935.59 0.00 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00
rc108 138 13 1936.82 0.00 0.25 0.00 0.00 0.25 0.25 0.00 0.25 0.00
rc108 138 13 1936.82 0.00 0.20 0.20 0.00 0.20 0.20 0.00 0.20 0.00
rc108 880 13 1936.82 0.00 0.25 0.25 0.25 0.25 0.00 0.00 0.00 0.00
rc108 189 14 1947.98 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00
rc108 85 14 1954.16 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50
rc108 64 14 1957.65 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.33 0.00
rc108 69 14 1957.65 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33
rc108 91 14 1957.65 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00
rc108 182 14 1965.05 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.25
rc108 182 14 1965.05 0.00 0.00 0.20 0.00 0.20 0.20 0.00 0.20 0.20
rc108 174 14 1977.35 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
rc108 116 14 1978.29 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.20
rc108 107 15 1986.20 0.00 0.00 0.17 0.17 0.17 0.17 0.00 0.17 0.17
rc108 145 14 1991.67 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.20 0.20
rc108 107 14 1995.62 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.25
rc108 107 14 1995.62 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.20 0.20
rc108 88 14 1997.71 0.00 0.00 0.17 0.00 0.17 0.17 0.17 0.17 0.17
rc108 400 14 1998.94 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.33
rc108 65 14 1999.26 0.00 0.00 0.00 0.33 0.33 0.33 0.00 0.00 0.00
rc108 65 14 1999.26 0.00 0.00 0.25 0.25 0.25 0.25 0.00 0.00 0.00
rc108 84 14 1999.26 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.25 0.00
rc108 84 14 1999.26 0.00 0.00 0.20 0.20 0.20 0.20 0.00 0.20 0.00
rc108 99 14 1999.26 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.00 0.00
rc108 100 14 1999.26 0.00 0.00 0.25 0.00 0.25 0.25 0.25 0.00 0.00
rc108 101 14 1999.26 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.20 0.00
rc108 102 14 1999.26 0.00 0.00 0.17 0.17 0.17 0.17 0.17 0.17 0.00
rc108 179 15 2000.58 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
rc108 183 15 2000.58 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
rc108 135 14 2005.52 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00
rc108 136 14 2005.52 0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00
rc108 64 14 2006.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
rc108 116 14 2006.75 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25
rc108 155 15 2011.15 0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25
rc108 113 14 2043.96 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33
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B Data

rc108 114 14 2043.96 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.25 0.25
rc108 86 15 2052.47 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.00 0.25
rc108 144 15 2052.47 0.00 0.00 0.20 0.20 0.20 0.20 0.00 0.00 0.20
rc108 198 15 2052.47 0.00 0.00 0.20 0.00 0.20 0.20 0.20 0.00 0.20
rc108 199 15 2052.47 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.25
rc108 34 15 2054.75 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50
rc108 44 15 2054.75 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.33
rc108 48 15 2054.75 0.00 0.00 0.00 0.25 0.00 0.00 0.25 0.25 0.25
rc108 48 15 2054.75 0.00 0.00 0.20 0.20 0.00 0.00 0.20 0.20 0.20
rc108 49 15 2054.75 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.25
rc108 51 15 2054.75 0.00 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.33
rc108 49 15 2059.23 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00
rc108 58 15 2059.23 0.00 0.00 0.33 0.33 0.00 0.00 0.00 0.33 0.00
rc108 44 15 2059.74 0.00 0.00 0.20 0.20 0.00 0.20 0.20 0.00 0.20
rc108 45 15 2059.74 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.25
rc108 50 15 2059.74 0.00 0.00 0.00 0.20 0.00 0.20 0.20 0.20 0.20
rc108 50 15 2059.74 0.00 0.00 0.17 0.17 0.00 0.17 0.17 0.17 0.17
rc108 54 15 2059.74 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.33
rc108 54 15 2059.74 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.00 0.25
rc108 46 15 2061.28 0.00 0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00
rc108 50 15 2061.28 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00
rc108 64 15 2061.28 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
rc108 68 15 2061.28 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00
rc108 157 15 2063.98 0.00 0.00 0.20 0.00 0.20 0.00 0.20 0.20 0.20
rc108 219 14 2064.29 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00 0.33
rc108 219 14 2064.29 0.00 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.25
rc108 42 15 2064.48 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
rc108 45 15 2066.18 0.00 0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00
rc108 48 15 2066.18 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25 0.00
rc108 49 15 2066.18 0.00 0.00 0.25 0.25 0.00 0.25 0.25 0.00 0.00
rc108 65 15 2066.18 0.00 0.00 0.20 0.20 0.00 0.20 0.20 0.20 0.00
rc108 40 15 2067.44 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
rc108 41 15 2067.44 0.00 0.00 0.33 0.33 0.00 0.00 0.33 0.00 0.00
rc108 42 15 2067.44 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00
rc108 44 15 2067.44 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00
rc108 47 15 2067.44 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
rc108 48 15 2067.44 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.00
rc108 49 15 2067.44 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33 0.00
rc108 49 15 2067.44 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.25 0.00
rc108 63 15 2067.44 0.00 0.00 0.25 0.25 0.25 0.00 0.25 0.00 0.00
rc108 67 15 2067.44 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00
rc108 68 15 2067.44 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.25 0.00
rc108 68 15 2067.44 0.00 0.00 0.20 0.20 0.20 0.00 0.20 0.20 0.00
rc108 93 15 2067.44 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.33 0.00
rc108 93 15 2067.44 0.00 0.00 0.25 0.25 0.25 0.00 0.00 0.25 0.00
rc108 43 15 2071.37 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25
rc108 44 15 2071.37 0.00 0.00 0.20 0.00 0.00 0.20 0.20 0.20 0.20
rc108 53 15 2071.37 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.33
rc108 53 15 2071.37 0.00 0.00 0.25 0.00 0.00 0.25 0.25 0.00 0.25
rc108 54 15 2071.37 0.00 0.00 0.00 0.25 0.00 0.25 0.00 0.25 0.25
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B.2 Tuning of search algorithm

rc108 54 15 2071.37 0.00 0.00 0.20 0.20 0.00 0.20 0.00 0.20 0.20
rc108 43 15 2076.10 0.00 0.00 0.25 0.00 0.00 0.25 0.25 0.25 0.00
rc108 44 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50
rc108 45 15 2076.10 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.33
rc108 46 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.00
rc108 47 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
rc108 47 15 2076.10 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.33 0.00
rc108 52 15 2076.10 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.33 0.00
rc108 52 15 2076.10 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00
rc108 62 15 2076.10 0.00 0.00 0.20 0.20 0.20 0.00 0.20 0.00 0.20
rc108 62 15 2076.10 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.33
rc108 63 15 2076.10 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.25 0.25
rc108 73 15 2076.10 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25 0.25
rc108 74 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33
rc108 75 15 2076.10 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50
rc108 77 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50
rc108 77 15 2076.10 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.33
rc108 77 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.33
rc108 77 15 2076.10 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.25 0.25
rc108 78 15 2076.10 0.00 0.00 0.00 0.17 0.17 0.17 0.17 0.17 0.17
rc108 78 15 2076.10 0.00 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.14
rc108 81 15 2076.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
rc108 86 15 2076.10 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.00 0.20
rc108 86 15 2076.10 0.00 0.00 0.17 0.17 0.17 0.17 0.17 0.00 0.17
rc108 92 15 2076.10 0.00 0.00 0.17 0.17 0.17 0.00 0.17 0.17 0.17
rc108 93 15 2076.10 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00
rc108 96 15 2076.10 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.25
rc108 97 15 2076.10 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.33
rc108 97 15 2076.10 0.00 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25
rc108 99 15 2076.10 0.00 0.00 0.00 0.20 0.20 0.00 0.20 0.20 0.20
rc108 127 15 2076.10 0.00 0.00 0.20 0.20 0.20 0.20 0.20 0.00 0.00
rc108 137 15 2076.10 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.00 0.00
rc108 45 14 2081.22 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00
rc108 53 14 2081.22 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.00 0.00
rc108 124 14 2137.25 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.33 0.00

Table B.1: Running through the algorithm on data set rc108 with 0 or 1 as value for each
factor of the filling function. This is done in order to determine, which factors
are the most significant. The data is sorted by total distance and plotted in
Figure 5.1.

B.2 Tuning of search algorithm

CPU V Distance l_max k_max d_max
rc108 279.0 13 1841.6390794978788 6 3 1
rc108 136.0 13 1818.9724744449716 6 3 3
rc108 98.0 13 1905.007934696568 6 3 6
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B Data

rc108 592.0 13 1805.3526045786984 6 4 1
rc108 530.0 13 1777.1104033062443 6 4 3
rc108 190.0 13 1893.6253780370464 6 4 6
rc108 987.0 13 1818.9476179847238 6 5 1
rc108 425.0 13 1860.249250330895 6 5 3
rc108 286.0 13 1866.2375815568384 6 5 6
rc108 506.0 13 1826.6503026078647 9 3 1
rc108 252.0 13 1818.9724744449716 9 3 3
rc108 134.0 13 1905.007934696568 9 3 6
rc108 1065.0 13 1800.6436324695246 9 4 1
rc108 647.0 13 1777.1104033062443 9 4 3
rc108 426.0 13 1839.7307320121433 9 4 6
rc108 1269.0 13 1818.9476179847238 9 5 1
rc108 662.0 13 1792.1648924315464 9 5 3
rc108 675.0 13 1838.8131937440876 9 5 6
rc108 710.0 13 1826.6503026078647 12 3 1
rc108 328.0 13 1818.9724744449716 12 3 3
rc108 148.0 13 1893.6867037717745 12 3 6
rc108 1330.0 13 1800.6436324695246 12 4 1
rc108 806.0 13 1777.1104033062443 12 4 3
rc108 493.0 13 1839.7307320121433 12 4 6
rc108 1831.0 13 1818.9476179847238 12 5 1
rc108 1233.0 13 1792.1648924315464 12 5 3
rc108 864.0 13 1838.8131937440876 12 5 6
r112 445.0 12 1556.593100448906 6 3 1
r112 197.0 12 1559.2476700978907 6 3 3
r112 192.0 12 1537.174526635105 6 3 6
r112 1039.0 12 1563.86073958881 6 4 1
r112 428.0 12 1571.908161149551 6 4 3
r112 234.0 12 1573.5685988560954 6 4 6
r112 885.0 12 1576.4721993104056 6 5 1
r112 964.0 12 1543.2260351367102 6 5 3
r112 443.0 12 1543.2260351367102 6 5 6
r112 648.0 12 1556.593100448906 9 3 1
r112 420.0 12 1559.2476700978907 9 3 3
r112 253.0 12 1537.174526635105 9 3 6
r112 1233.0 12 1563.86073958881 9 4 1
r112 833.0 12 1571.908161149551 9 4 3
r112 346.0 12 1536.5045708291686 9 4 6
r112 1412.0 12 1543.433344907333 9 5 1
r112 1334.0 12 1543.2260351367102 9 5 3
r112 637.0 12 1516.671917121077 9 5 6
r112 868.0 12 1556.593100448906 12 3 1
r112 461.0 12 1558.4968779992282 12 3 3
r112 286.0 12 1537.174526635105 12 3 6
r112 1526.0 12 1563.86073958881 12 4 1
r112 1051.0 12 1569.3212320166958 12 4 3
r112 411.0 12 1536.5045708291686 12 4 6
r112 1930.0 12 1543.433344907333 12 5 1
r112 2255.0 12 1543.2260351367102 12 5 3

58



B.2 Tuning of search algorithm

r112 765.0 12 1516.671917121077 12 5 6
r211 152.0 4 1959.2127537206743 6 3 1
r211 186.0 4 1985.0125943589278 6 3 3
r211 143.0 4 1985.0125943589278 6 3 6
r211 152.0 4 1959.2127537206743 6 4 1
r211 186.0 4 1985.0125943589278 6 4 3
r211 141.0 4 1985.0125943589278 6 4 6
r211 149.0 4 1959.2127537206743 6 5 1
r211 184.0 4 1985.0125943589278 6 5 3
r211 140.0 4 1985.0125943589278 6 5 6
r211 229.0 4 1959.2127537206743 9 3 1
r211 247.0 4 1985.0125943589278 9 3 3
r211 207.0 4 1985.0125943589278 9 3 6
r211 228.0 4 1959.2127537206743 9 4 1
r211 230.0 4 1985.0125943589278 9 4 3
r211 205.0 4 1985.0125943589278 9 4 6
r211 229.0 4 1959.2127537206743 9 5 1
r211 228.0 4 1985.0125943589278 9 5 3
r211 205.0 4 1985.0125943589278 9 5 6
r211 311.0 4 1959.2127537206743 12 3 1
r211 326.0 4 1847.4617030220193 12 3 3
r211 284.0 4 1889.189651189795 12 3 6
r211 312.0 4 1959.2127537206743 12 4 1
r211 334.0 4 1985.0125943589278 12 4 3
r211 285.0 4 1889.189651189795 12 4 6
r211 310.0 4 1959.2127537206743 12 5 1
r211 333.0 4 1985.0125943589278 12 5 3
r211 285.0 4 1889.189651189795 12 5 6
r101 1105.0 19 2007.3307072613225 6 3 1
r101 851.0 19 1972.306355902318 6 3 3
r101 376.0 19 1965.077508078404 6 3 6
r101 2400.0 19 2032.4341972360965 6 4 1
r101 2245.0 19 1944.9441406045821 6 4 3
r101 739.0 19 1944.9441406045821 6 4 6
r101 2413.0 19 2032.4341972360965 6 5 1
r101 2431.0 19 1972.679292748361 6 5 3
r101 2425.0 19 1972.679292748361 6 5 6
r101 2122.0 19 2007.3307072613225 9 3 1
r101 1477.0 19 1972.306355902318 9 3 3
r101 445.0 19 1965.077508078404 9 3 6
r101 2400.0 19 2032.4341972360965 9 4 1
r101 2403.0 19 1944.9441406045821 9 4 3
r101 2396.0 19 1944.9441406045821 9 4 6
r101 2400.0 19 2032.4341972360965 9 5 1
r101 2425.0 19 1972.679292748361 9 5 3
r101 2423.0 19 1972.679292748361 9 5 6
r101 2400.0 19 2007.3307072613225 12 3 1
r101 2000.0 19 1972.306355902318 12 3 3
r101 715.0 19 1965.077508078404 12 3 6
r101 2400.0 19 2032.4341972360965 12 4 1
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B Data

r101 2400.0 19 1944.9441406045821 12 4 3
r101 2402.0 19 1944.9441406045821 12 4 6
r101 2400.0 19 2032.4341972360965 12 5 1
r101 2414.0 19 1972.679292748361 12 5 3
r101 2404.0 19 1972.679292748361 12 5 6

Table B.2: Observations of rc108, r112, and r211 data sets for tuning of the search algorithm.
CPU lists the running time in seconds, and V the number of vehicles. Common
for all solutions is that they have tl_length=9. Runtime limit set to 2400
seconds, that is 40 minutes.
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